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Abstract

Yamen Cryptosystem: An Enhanced RSA by Using Rabin Algorithm and Huffman

Coding. By Abdallah Karakra

Today, RSA algorithm is the most widely used public-key cryptosystem around the

world. It is used for security in everything from online shopping to cell phones. However,

the basic RSA is not semantically secure, i.e., encrypting the same message more than

once always gives the same ciphertext. For this reason, the basic RSA is vulnerable

to set of indirect attacks, such as known plaintext, chosen plaintext, timing, common

modulus, and frequency of blocks (FOB) attacks. To the best of our knowledge no one

points to FOB attack against RSA. Moreover, RSA is known to be much slower than

the standards symmetric key encryption and it does not used for encrypting large data.

In this thesis, we design and implement a swift and secure variant of RSA based on Rabin

and Huffman coding called Yamen cryptosystem to solve aforementioned limitations

of the basic RSA. A new additional randomization component Y is added in Yamen

cryptosystem. This component is encrypted by Rabin algorithm to improve the security

level of RSA against the indirect attacks and make RSA semantically secure. Moreover,

Yamen makes the factorization problem harder against brute force attack, since the

attackers need to break the factorization of large numbers for both RSA and Rabin.

Besides, employing Huffman coding compression in Yamen prevents FOB attack and

speeds up the execution time for the Yamen.

Yamen cryptosystem comes with three sensitive enhancement factors comparing with

basic RSA. These factors are security, execution time and the Size of the ciphertext.

Yamen cryptosystem is semantically secure. Yamen generates different ciphertexts for

the same message. Also, our testing results over set of file sizes of 1MB, 2BM,.., to

10 MB show that Yamen cryptosystem is faster than basic RSA by 45% in encryption

process and 99% in decryption process. Also, we found that RSA system increases the

size of ciphertext by 1% compared to the original file size, while Yamen cryptosystem

reduces the size of ciphertext by 54% from its original sizes. This reduction depends on

the number of occurrences of the symbols inside the file.
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 الملخص
 

 :تشفير يامنال نظام
 ناباستخدام خوارزمية رابين وترميز هافم المُعزز  آر أس أيه 

 
 عبد الله كراكرة: اعداد 

 

نحاء العالم، أ جميع ستخدام فيكثيرة الإلية تشفيرآ فهو، للغاية ال آر أس أيه مهم نظام التفشيرعد ي، اليوم
 هناك بعض القيودلكن و .الانترنت إلى الهواتف المحمولة التسوق عبر دم في شتى المجالات ابتداء منخستيو

ن النص إكثر من مرة بنفس المفتاح فأ شفرتذا إن نفس الرسالة أ، ومثال ذلك آر أس أيهال  نظام التفشيرعلى 
صبح عرضة لبعض الهجمات غير يآر أس أيه  تفشير اليكون نفسه، لهذا السبب فان نظام هذه الحالة في المشفر 
، وهجوم الوقت، مشترك، النص غير المشفر المعروف، واختيار النص غير المشفرالعامل المثل رة المباش

 نظام التفشيرمن المعروف أن وأيضا  -اللبنات حد مسبقا لهجموم تكرارأحسب معرفتنا لم يشر - وتكرار اللبنات
  .انظمة التشفير التماثليةأبطىء بكثير من  ال آر أس أيه

 
ماد على نظام تشفير تالاعب ال آر أس أيه نظام التفشيرمن من آنعرض نظام تشفير سريع وهذه الرسالة  في

 تم فقد، آر أس أيهنظام  التي يعاني منها والهجمات  لحل القيود يامن نظام التفشيربرابين وترميز هافمان يسمى 
بواسطة نظام تشفير  فرشي  ال آر أس ايه، هذا العنصر العشوائي  نظام التفشيرشوائي على اضافة عنصر ع

علاوة على . دلاليا آمن هوجعل ضد الهجمات غير المباشرةال آر أس  نظام التفشيرمان ألرفع مستوى رابين 
عداد إلى تحليل الأ، حيث يحتاج المهاجم صعوبةكثرأى عوامله إلجعل من تحليل العدد  يامن نظام التفشيرف، ذلك

تم توظيف بجانب ذلك . يامن نظام التفشيرلكسر  و رابين آر أس أيهلى عواملها في كلا الخوارزميتين إ
 .يامن نظام التفشيروتسريع وقت التنفيذ في  تكرار اللبناتعن  قد تنتجالتي لمنع الهجمات  هافمانترميز

 
حجم النص مان و وقت التنفيذ والأ: هي آر أس أيهحسن ثلاثة عوامل حساسة مقارنة مع ينظام تشفير يامن ف

نظام بعد اختبار . نصا مشفرا مختلفا لنفس الرسالة، حيث يقوم بتوليد دلاليا آمنهو  نظام التشفير يامنف .شفرالم
ميجابايت أظهرت  01حجام ابتداء من حجم واحد ميجابايت حتى حجم يامن على عدة ملفات مختلفة الأ التفشير
% 99، وتقريبا في عملية التشفير% 54والي أيه بحكثر سرعة من ال آر أس أ يامن نظام التفشيرن أالنتائج  

نظام التفشير آر أس آيه يزيد من حجم النص المشفر مقارنة بالنص  نأكذلك وجدنا ، في عملية فك التشفير
% 45صلي بـ يقلل من حجم النص المشفر مقارنة بالنص الأ نظام التفشير يامن بينما .تقريبا% 0صلي بـ الأ

 .صليعدد الرموز المكررة داخل النص الأعلى  وهذه النسبة تعتمد ، تقريبا
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Chapter 1

Introduction

Suppose Alice wants to protect her home, she could purchase high-quality locks and

install some of them on her door, but unfortunately she forgot to close and to secure

the house windows. A fool robber may consume times to unscrew the hinges and in

the result may be failed or caught by police. On the other hand, a clever robber might

simply do not spends the effort to open the locks, just climbs to the open window, steals

what he wants and runs away with spoils. This example of indirect attack on household

security can be happened against cryptographic algorithms in the world of network and

information security.

There are two main types of attacks that can be carried out against cryptographic

encryption algorithms. First type is called direct attack or brute force attack. In direct

attack, the attacker tries to get the secret keys which have been used in encryption

process by trying all possible combinations to find these keys. The second type is indirect

attacks where the attackers try to bypass the encryption algorithm using indirect ways

for getting the original message without generating the brute force attacks. The attackers

try to exploit the weaknesses of the algorithm implementation or depending on other

information available to them. Such indirect attacks are what actually happened against

the Rivest, Shamir and Adleman (RSA) algorithm [1].

RSA is the underplaying cryptosystem for many network security protocols, such as Se-

cure Sockets Layer (SSL) [2], Transport Layer Security (TLS) [3], Secure Shell (SSH) [4]

and IPsec [5]. In addition, it is also used in several authentication agents, such as Win-

dows 2008 server [6] and UNIX [7] operating systems. Furthermore, it is used in some

database systems, such as Oracle [8] and MySQL [9]. Therefore, if the RSA cryptosys-

tem is broken, all of these critical applications will be vulnerable to security and privacy

violation.

1



Chapter 1. Introduction 2

The security of RSA system depends on the difficulty of factorizing large numbers. In

fact, the prime factorization of large numbers is known as a hard problem in the state of

the art. Until now, the indirect attacks are the feasible attacks against RSA. Therefore,

this thesis presents some types of indirect attacks against RSA, and the way to prevent

or at least mitigate them.

For simplicity and illustration purposes, we will use different examples. We will use

three known characters in the world of the security; Alice, Bob and Eve. Alice and

Bob are the authorized users, and they want to communicate with each other securely.

Eve is an adversary and she wants to disclose the messages transferred between Alice to

Bob. In other word, Alice and Bob try to find a way for exchanging messages between

themselves in a secure manner to avoid people from revealing it. However, Eve tries

to invest all of the available information in her hand to exploit the scramble messages

transferred between Alice and Bob.

The rest of this chapter organized as follows: Section 1.1 presents the statement of the

research problem and the proposed solution. Section 1.2 discusses the contribution of

thesis. Finally, Section 1.3 shows the thesis organization structure.

1.1 Statement of the Problem

Most of Internet applications and security protocols depend on RSA cryptosytem. It

is used in most of electronic commercial communications [10]. It is used for protecting

emails and traffic of the web. In addition to securing some of the wireless devices and

network resources [11].

RSA is not semantically secure [12]. That is mean, encrypting the same message more

than once always gives the same ciphertext [13]. This weakness can lead to many attacks

against RSA algorithm. Such these attacks, Common Modulus [14–16], Known plaintext,

Chosen-plaintext [17], and Timing [18] attacks. Moreover, RSA does not solve blocks

redundancy in the message before the encryption, hence RSA suffers from Frequency of

Block (FOB) attack. If we ignore these attacks, most of the applications that use RSA

will be exposed for attacks, and the security and privacy will be violated.

Another problem that can be consider as a drawback of RSA cryptosystem is intensive

computation time [19]. RSA encryption and decryption processes is very time consum-

ing comparing to symmetric key encryption like DES (Data Encryption Standard) [20],

RSA is slower than DES by more than 1000 times [21]. Therefore, the usage of RSA is

limited for symmetric keys encryption instead of encrypting the entire data. The data it-

self is encrypted by using symmetric encryption like DES and this make the encryption
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and decryption process more complex, Diffe states that “the restriction of public-key

cryptography to key management and signature applications is almost universally ac-

cepted” [22].

Therefore, this thesis answers the following research questions:

1. How to make RSA algorithms semantically secure to thwart or at least weaken

indirect attack?

2. How to enhancing the execution time for the enhancement RSA algorithm (Yamen

cryptosystem) to be competitive comparing with the basic RSA?

3. How to extend the usage of RSA system for encrypting large data within feasible

and acceptable time?

1.2 Contribution of Thesis

The fact that RSA is time intensive and semantically not secure makes RSA usage is

limited to key exchange and digital signature. These limitations motivate us to find

solution to solve or at least mitigate these drawbacks. We summarize our contributions

as follows:

� Augment RSA cryptosystem to make it more secure against Common Modulus,

Known plaintext, Chosen-plaintext, and Timing attacks [23]; by adding a ran-

domized component to the basic RSA and encrypting this component by another

public-key cryptosytem called Rabin [24]. This makes RSA semantically secure

against these attacks by generating different ciphertexts for the same message.

Also, this makes RSA stronger against brute force attack (direct attack), since at-

tackers need to break the factorization of large numbers for both RSA and Rabin.

Consequently, the attackers will require longer time than before.

� Thwart the Frequency of Block (FOB) attack by using Huffman coding. Huffman

coding compress data in away to reduce the redundancy in the message, which

helps to prevent this attack.

� Enhance the execution time for the Yamen cryptosystem comparing with the basic

RSA by using Huffman coding. By encrypting part of the message, while blinding

the other part of the same message using XOR operator, since XOR operator is

always faster than multiplication, division and addition [25]. Yamen cryptosystem

is faster than basic RSA by about 45% in encryption process and around 99% in

decryption process.
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� Reduce the sizes of large data using Huffman coding, it feasible to use Yamen

cryptosystem for encrypting large files. Yamen cryptosystem reduces the size of

encrypted file by 54% from the original sizes. This reduction depends on the

number of occurrences of the symbols inside the file. While RSA system increases

the size of ciphertext by approximately 1% compared to the original file size.

1.3 Organization of the Thesis

The thesis is structured in the following way:

Chapter 2: presents the important definitions and concepts of public key cryptography

that are related to the remaining chapters of this thesis. Firstly, we present mathematical

preliminaries that are necessary for understanding the public key cryptosystems. Then

we discuss the encryption techniques and classify them based on the number of keys.

First, symmetric key encryption and the key distribution problem. Second, public-

key encryption. Where, we discuss RSA and Rabin cryptosystems, and what are the

differences between them.

Chapter 3: presents the literature review about the attacks against RSA and the

proposed approaches to solve or to mitigate them. We classify these approaches into

three categories based on its techniques. First category is the Dice solution. Second

category is called Dice solution Follower. Third category is the Hungry mouse solution.

After that, we illustrate the limitations of these solutions.

Chapter 4: Presents new cryptosystem called Yamen, which is an enhanced version of

RSA. We introduce the combination of RSA and Rabin cryptosystems for generating

Yamen cryptosystem. We present amendment components to the basic RSA; using

Huffman coding and random component to build Yamen cryptosystem. Also, we discuss

the design model and the implementation of Yamen cryptosystem. After that, we present

Huffman coding and XOR operation to speeding up Yamen system. Conclusion is given

at the end of the chapter.

Chapter 5: In this chapter, we present three sensitive factors enhanced by Yamen

cryptosystem comparing with basic RSA. These factors are Security, Execution time

and the Size of the ciphertext. The experiments applied to get the evaluation results are

summarized in section 5.1, then the finding results are given in section 5.2. Section 5.3

states the added value of Yamen over the basic RSA. Conclusion is given at the end of

the chapter.



Chapter 1. Introduction 5

Chapter 6: This chapter summarizes the main idea of this thesis. Difficulties and

recommendations are presented in section 6.2 and section 6.3 consequently. Outlook is

presented in section 6.4.



Chapter 2

Foundation

Cryptography is the science or art for protecting data [26, 27]. For a thousand of years

throughout the history, cryptography plays an important role for securing communica-

tion between people. Currently, cryptography is used for securing military, commercial

and private communications [28]. Cryptography enables us to store or to transmit sensi-

tive data over insecure channels by scrambling it [29]. The orginal data before scrambling

is called plaintext and the scrambled data is called ciphertext. The process of scrambling

the plaintext to be irretrievable to anyone other than intended persons is called encryp-

tion process. On the other hand, converting encrypted data (ciphertext) to its original

plaintext is called decryption process.

Cryptographic techniques can be classified into two groups based on the number of

used keys in encryption and decryption processes; Symmetric (shared or single) key

encryption and Asymmetric (public key) encryption [30]. Symmetric key encryption

uses a single key for encryption and decryption process, while asymmetric encryption

uses two keys, one for encryption and the other one for decryption.

In symmetric encryption both parties must share the same keys. In other word, they

must exchange the keys to using in encryption. Exchange the keys between the two

parties is not an easy task, especially if the two parties far away. So, the asymmetric

encryption introduced to solve the key distribution problem, since no need for the two

parties to share secret keys, all communications involve only public keys, and no private

key is ever exchanged or shared.

In section 2.1, we present the mathematical preliminaries that is used in public key

algorithms. Then, we discuss the encryption techniques in section 2.2. After that, we

explain two public keys algorithms, called RSA and Rabin cryptosystems in section 2.3.

Finally, we conclude the chapter in section 2.4

6
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2.1 Mathematical Preliminaries

Definition 1 (Prime number)

An integer number is called a prime number if it can be divided only by 1 and itself,

where that number is greater than 1. In other words, Prime number is a number whose

only factors are 1 and itself, where the number is greater than 1.

Example: 5 is a prime number, since it is only divided by 1 and 5.

Definition 2 (Relatively prime)

Two numbers are called relatively prime (also called mutually prime or coprime) if they

do not share any factors other than 1, such as, the integers a and b are relatively prime

if gcd(a, b) = 1.

Example: 3 and 5 are relatively prime, since the only common factor for these inte-

gers is 1. gcd(3, 5) = 1.

Definition 3 (Euler’s Totient Function φ)

Euler’s Totient function is defined as φ(n), where φ(n) is the number of positive integers

less than n and relatively prime to n.

Example1: Let the integer number n is 8, the positive integers less than 8 and rela-

tively prime to 8 is {1, 3, 5, 7} =⇒ φ(8)=4.

Example2 : let the number n is 7, the positive integers less than 7 and relatively prime

to 7 is {1, 2, 3, 4, 5, 6} =⇒ φ(7)=6.

Euler’s Totient Function φ properties:

� If the integer n is a prime number then φ(n)=n-1.

Example: φ(7)=7-1=6.

� Euler’s Totient function is a multiplicative function, that is, if there are two integers

such as, a and b are relatively prime, then φ(ab) = φ(a) × φ(b) [31].

Example: φ(3×5) = φ (3)×φ (5)=2×4=8.

Definition 4 (Fermat’s Little Theorem)

If p is prime and a is a positive integer not divisible by p, that is, gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p). Also, for every integer a we have ap ≡ a (mod p).

Example: If p = 7, a = 2 , gcd(2, 7)= 1 =⇒ 26 ≡ 1 (mod 7).

. Also, 27 ≡ 2 (mod 7)
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Extended Euclidean algorithm

Algorithm 1 Extended Euclidean algorithm

1: procedure Extended Euclidean algorithm

2: INPUT: two non-negative integers a and b with a ≥ b

3: OUTPUT: d = gcd(a, b) and integers x, y satisfying ax + by = d.

4: If b = 0 then set d ← a, x ← 1, y ← 0, and return(d,x,y).

5: Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1.

6: While b > 0 do the following:

q ← b a/b c, r ← a – qb, x ← x2 – qx1, y ← y2 – qy1.

a ← b, b ← r, x2 ← x1, x1 ← x, y2 ← y1, and y1 ← y.

7: Set d←a, x←x2, y←y2, and return(d,x,y).

Fact

If A and B are binary numbers and A ⊕ B = C, then,

C ⊕ B = A.

Example: If A=1010 , B=0100

. A ⊕ B = 1010 ⊕ 0100 = 1110 = C

. C ⊕ B = 1110 ⊕ 0100 = 1010

2.2 Encryption

Encryption is a way of transforming regular data into a form that can be understood

only by an authorized parties. The opposite of encryption is called decryption, which is

transforming the encrypted data to its origin.

There are two basic encryption techniques symmetric and asymmetric. Each of these

techniques is used in a variant way based on a need. Each technique has its own char-

acteristics, but the two techniques depend on a science of protecting the data.

First, we present symmetric key encryption in subsection 2.2.1, then we discuss the main

challenge for deploying the symmetric key encryption in subsection 2.2.2. After that,

we explain the public key encryption in subsection 2.2.3, which is important for the

remainder of this thesis.
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2.2.1 Symmetric Key Encryption

Symmetric encryption, also known as a conventional, secret-key, or single-key encryption,

in which the sender and receiver share the same key for encryption and decryption

process. For example, Alice wants to send a message M to Bob. At the beginning, Alice

and Bob must have some secret information called key, that key (K) is only known

to Alice and Bob but not to others. Alice encrypts the message M as E(M,K) to

produce the ciphertext C, then Alice sends the ciphertext C to Bob, he in role decrypts

the ciphertext as D(C,K) to recover the original Message M . Figure 2.1 illustrates a

simplified model of the symmetric encryption process, in which the symmetric encryption

has five components [32]:

Figure 2.1: Simplified Model of the Symmetric Encryption Process

1. Plaintext is the original message or data that is input of the encryption algorithm.

2. Encryption Algorithm is the responsible algorithm for performing various trans-

formations on the plaintext.

3. Secret Key is the secret information that is shared between the sender and the

receiver. Also, its an input to the encryption algorithm.

4. Ciphertext is the scrambled data that is produced as an out of the encryption

algorithm by using the secret key and the plaintext.

5. Decryption Algorithm is the algorithm that can convert the ciphertext data to it

is original plaintext so the authorized user can retrieve it.

The security of symmetric encryption process depends on several factors. First, building

strong encryption algorithm known to everyone, where no one can break it to figure out

the key or to decipher the ciphertext to find the plaintext [32]. Second, the key must be

long enough to avoid the possibility of finding the key through the brute force search.

If the key is known to the adversary in anyway, then entire encryption process will be
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break. Therefore, the key must be kept secret between the two authorized communicated

parties (sender and receiver). However, sharing or exchanging the same key between the

two communicated parties is not a trivial task basically if they are geographically fare

away and they want to communicate via insecure channel. This problem known as Key

Distribution Problem.

2.2.2 Symmetric Keys Distribution Challenges

Key plays an important role in symmetric encryption, since the algorithm is known,

but the key must be secret. To enable the two parties to exchange the encrypted data,

they must share the same key, and the key must be protected and no one can access the

key except the authorized parties. In other words, we need to ensure the key exchange

in away, where no one except the sender and the receiver can perform the encryption

and decryption process. But the question is, how the two parties share the key? The

answer is that they may exchange the key physically. That is, Alice chooses the Key

and physically delivered to Bob or visa versa. But if there is a fare distance between

Alice and Bob, exchange the keys physically is not a good solution, since how many

minutes, hours or days one needs for exchanging the key physically? Also, if the two

parties want to change the key more than once, one of them should travel to other to

deliver the new key. However, if there are more than two parties like three, four, or

more, where each one of them in different countries. In this case, traveling to different

countries each time they want to exchange the key is not an easy task. Thus, they may

look for another approach to exchange the key. At the first time, they exchange the key

physically, and then they use the recent key for encrypting the newly one. But if the

attacker in somehow succeeds in gaining access to one key, then, all of the subsequent

keys will be compromised, and the ciphertext will be disclosed. The next subsection

presents another approach, which is the common approach to solve the key distribution

problem that based on the public key encryption.

2.2.3 Public Key Encryption

Public key encryption was introduced in 1976 by Whitfield Diffie and Martin Hellman to

solve the key distribution problem [33, 34]. Public key encryption, also called asymmetric

encryption, where one party has a secret key called private key and the other party has

a public key. The private key must be kept secret, while the public is published, so

no need for the sender and receiver to share secret keys, all communications involve

only public keys, and no private key is ever transmitted or shared. When Alice wants

to send a secret message M to Bob, Alice uses the Bob public key for encrypting the
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message M as E(M , KUB) to generate ciphertext C, while Bob uses his private key

for decrypting the ciphertext C as D(C, KRB) to recover the original Message M .

Therefore, there is no secret key exchanged between Alice and Bob. Bob private key

is still kept secret, while his public key is published. Figure 2.2 illustrates a simplified

model of the asymmetric encryption process. In which the asymmetric encryption has six

components [32]: Plaintext, Encryption Algorithm, Public key, private key, Ciphertext,

and Decryption Algorithm.

Figure 2.2: Simplified Model of the Asymmetric Encryption Process

Actually, there are many public key algorithms. such as, Diffie–Hellman[35], RSA[1],

Rabin [36] , ElGamal [37], Elliptic Curve Cryptography (ECC)[38, 39], and others.

Diffie-Hellman algorithm is used for secret key exchange between two parties securely,

then they use the exchanged key for encrypting the subsequent messages using sym-

metric key encryption [40]. The security of Diffie-Hellman depends on the difficulty of

computing discrete logarithms [33]. However, the algorithm itself suffers from the man-

in-the-middle attack, since it does not authenticate the communicating parties [41].

ElGamal public-key system depends on discrete logarithms of a large prime modulus [37],

it’s closely related to the Diffie-Hellman technique. ElGamal is not deterministic algo-

rithm [42], encrypting the same plaintext gives a different ciphertext, but unfortunately

the algorithm has a disadvantage related to the message size, such as the size of the

ciphertext is twice the size of the original message [37].

RSA is most widely accepted as trusted public key encryption, its security depends on

the idea of the hardness of factoring large integers [43, 44]. RSA uses two keys, one is

published to public and the other remaining secret. The private key is kept secret and

therefore need to never be distributed. However, the main disadvantage of current RSA

encryption schemes is the computational overhead.

Rabin Encryption algorithm is a public key algorithm, whose security similar to the

RSA, based on the hardness of integer factorization. Michael Rabin in [36] prove that

Rabin is more secure than RSA, since Rabin is hard as hard of integer factorization,

which is not true for the RSA.
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ECC is a public-key technology that extends equal protection to the RSA using smaller

key size [45]. Since the algorithm is new the confidence level to use it is not yet as high

as that in RSA. The critical disadvantages that ECC suffer from that it increases the

size of the encrypted message significantly compared to the RSA encryption [46].

In this thesis we concentrate on the RSA and Rabin algorithms, since they are similar

in some process like encryption process. Also the two algorithms depends on the integer

factorization. However, Rabin algorithm can be replaced by another approach from

other public key cryptostsyems.

2.3 RSA and Rabin Algorithms

This section presents two public key cryptosytems: RSA and Rabin cryptosystems. We

give some explanation on how the two cryptosystems work and what is the difference

between them. Also, what is the advantages and the disadvantages for each one.

2.3.1 RSA Algorithm

RSA is the most popular and widely used asymmetric cryptosystem in the world [47].

RSA cryptosystem developed by Ron Rivest, Adi Shamir and Leonard Adleman in

1977. RSA letters stands for the initials of surnames of the inventors [48]. Security of

RSA depends on idea of the hardness of factoring a large integers [43, 44].

The basic operation of RSA is represented as follows: if Alice wishes to send a secret

message M to Bob; Alice must use the Bob public key (KUB) to encrypt the message,

and Bob uses his private key (KRB) to decrypt the encrypted message C, as the following

steps.

Step1: Bob generates the key pair (KUB, KRB) by using Algorithm 2:

Algorithm 2 Keys Generation Process

1: procedure

2: Choose two distinct large prime numbers p, q.

3: Compute N as N = pq.

4: Compute Euler’s totient function φ(N) as φ(N) = (p− 1)(q − 1).

5: Choose a random integer e (public exponent), such that

1 <e <φ(N) and gcd(e, φ(N)) = 1.

6: Calculate the private exponent d such that ed = 1 mod φ(N).
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Step2: Bob keeps the private key KRB=(N , d) secret, while publishes the public key

KUB=(N , e).

Step3: Encryption process is done by the sender. In this scenario, the sender is Alice,

such as Algorithm 3:

Algorithm 3 Encryption Process

1: procedure

2: Alice writes the message M she wishes to send to Bob,

where M between 0 and N − 1.

3: She uses a Bob public key (KUB) to encrypt the message M by computes C,

such as C = M e mod N .

4: She sends the ciphertext C to Bob.

Step4: Decryption process is done by the receiver. In this scenario, the receiver is Bob,

as Algorithm 4:

Algorithm 4 Decryption process

1: procedure

2: Bob receives the ciphertext C from Alice.

3: He uses his private key (KRB) to decrypt the ciphertext C,

to recover the original message M as M=Cd mod N .

As shown in the steps before, the secret key remains with Bob, not given to Alice nor

to any one from the public.

Let’s illustrate the RSA idea with the following example:
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Example: (RSA encryption and decryption process)

Key pair generation: Bob does the following

1. Selects p=11 and q=7

2. Computes N as N=11×7=77

3. Computes φ(N) as φ(N) =10×6=60

4. Selects e=37

5. Computes d as d=13

6. The public key is KU= (77,37)

7. The Private key is KR= (77,13)

The Private key (77,13) is kept secret, also, Bob hides p,q and φ(N) while the

public key (77, 37) is publish.

Encryption Process: Alice does the following

1. Selects the message M=15

2. By using Bob public key, she calculates the ciphertext C=1537 mod 77=71

3. Sends the ciphertext C to Bob

Decryption Process: Bob does the following

By using his private key, he computes the message as M=7113 mod 77=15

2.3.2 Rabin Algorithm

Rabin algorithm has been developed by Michael Rabin in January 1979, and the security

of a Rabin algorithm like that of RSA security, is based on the difficulty of factoring

large integers. As Srivastava and Mathur state in [49], the main disadvantage of Rabin

algorithm is the extra complexity which is required for decryption process to identify the

corresponding plaintext M from the four possible roots. That is, there are four possible

output roots mi where i=1, 2, 3, 4 generated from the decryption process. Thus, we

need extra time to know which mi represents the original message M .

The basic operation of Rabin algorithm is represented in the following scenario. If Alice

wishes to send a secret message M to Bob, Alice must use the Bob public key (KUB)
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for encrypting the message, and Bob uses his private key (KRB) for decrypting the

encrypted message C, as the following steps.

Step1: Bob generates the keys (KUB, KRB) by using Algorithm 5:

Algorithm 5 Keys Generation

1: procedure

2: Bob chooses two distinct large prime numbers p and q on the form 4k + 3

3: Computes N , such as N= pq.

Step2: Bob keeps the private key KRB =(p, q) secret, while publishes the public key

KUB =N .

Step3: Encryption process is done by the sender. In this scenario, the sender is Alice.

as Algorithm 6:

Algorithm 6 Encryption Process

1: procedure

2: Alice writes the message M she wishes to send to Bob,

where M in the rang 0 and N − 1.

3: She uses Bob public key (KUB) to encrypt the message M by computing C as

C = M2 mod N .

4: She sends the ciphertext C to Bob.

Step4: Decryption process is done by the receiver. In this scenario, the receiver is Bob.

as Algorithm 7:
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Algorithm 7 Decryption Process

1: procedure

2: Bob receives the ciphertext C from Alice.

3: He uses his private key (KRB) to decrypt the ciphertext C

and recovers the original message M as:

1) Compute R = C(p+1)/4 mod p

2) Compute S=C(q+1)/4 mod q

3) Find a, b where ap + bq=1

4: Use Chinese Remainder Theorem [50] to find four square roots

(there are four possible original messages).

1) Find X as X= (apS + bqR) mod N =m1, where m1 is the first root.

2) Find –X as –X= N -X= m2, where m2 is the second root.

3) Find Y=(apS - bqR) mod N = m3, where m3 is the third root.

4) Find –Y as –Y = N -Y = m4, where m4 is the fourth root.

5) Choose which mi, where i=1, 2, 3, 4, is the correct root (plaintext).

.

The problem in the Rabin algorithm is, which one of the four roots represents the

correct message?

The answer is to pad the message in a manner that stand out of the four possible mes-

sages fits the padding. For example, adding special character or something else at the

end of the message before encryption, and after decryption, only one from the four pos-

sible messages will contain that special character. Another way, we can replicate the last

part of the message and adding them at the end of the message before the encryption;

only the correct message contains the replicating part. Let’s illustrate the Rabin idea

with the following example:
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Example: (Rabin encryption and decryption process)

Key pair generation: Bob does the following

1. Selects p=307 and q=311 (307, 311 on the form 4k+3). The Private key is

(307,311)

2. Computes N as N=307×311=95477

3. The public key is (95477)

The Private key (307,311) is kept secret, while the the public key (95477) is

publish.

Encryption Process: Alice does the following

1. Selects a message M=231, the binary representation for M=(11100111)2.

2. Pads the message before encryption ( to know which one of the four roots

represents the correct message).

3. Adds 3 zero’s at the end of the M , M ′=(11100111000)2=(1848).

4. Calculates the ciphertext C=18482mod 95477=73409

5. Sends the ciphertext C to Bob

Decryption Process: Bob does the following

By using his private key, he computes the message M as the following:

� Compute R = C(p+1)/4 mod p =⇒ R=73409(307+1)/4 mod 307 = 6

� Compute S=C(q+1)/4 mod q =⇒ S=73409(311+1)/4 mod 311= 18

� Find Extended Euclidean algorithm

V (-78)(307)+(77)(311)=1 =⇒ a=-78 and b=77
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Cont. (Rabin encryption and decryption process)

Use Chinese Remainder Theorem to find four square roots (there are four possible

original message)

� Find X as X=(apS + bqR) mod N

V(-78 × 307 ×18 + 77×311×6)mod 95477 =⇒ m1=94562

� Find –X as –X=N -X = 95477-94562=915 =⇒ m2 = 915

� Find Y=(apS-bqR) mod N

V (-78×307×18 – 77×311×6) mod 95477 =⇒ m3 =93629

� Find –Y as –Y=N -Y = 95477-93629 = 1848 =⇒ m4=1848

convert m1, m2, m3 and m4 to binary

m1=(94562)10=(10111000101100010)2

m2=(915)10=(111001001)2

m3=(93629)10=(10110110110111101)2

m4=(1848)10=(11100111000)2

select the root (m), that contains 3 zero’s at the end of it’s binary.

m4=(1848)10=(11100111000)2

By removing the 3 zero’s from the end of m4 we get (11100111)2.

convert (11100111)2 to decimal, (231)2.

⇒ M=m4=231 is the correct message

2.3.3 RSA Versus Rabin Algorithms

The hardness of breaking Rabin cryptosystem is equivalent to the hardness of factor-

ing [36, 51–55], while breaking RSA not possible to be equivalent to the hardness of

factoring [36, 52, 53, 55, 56]. In Rabin, the 4k+3 makes the the factorization problem

more complex, since 4k+3 gives both prime and non-primes numbers, hence the attacker

needs extra complexity to check if the number is prime and if the number is on the form

of 4k+3.

Rabin is more efficient than RSA in encryption process [55]. The reason is that the

encryption process in Rabin needs to compute square of the message modulo N , while

RSA needs to compute of eth powers. In other words, C = M2 mod N in Rabin, while

C = M e mod N in RSA.
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Decryption process of Rabin cryptosystem produces four results; one of them is correct,

while the RSA cryptosystem produces one correct result [52, 55]. This point is advantage

for RSA while disadvantage for the Rabin in term of the execution time, but it is an

advantage for Rabin in term of security since it adds additional complexity for the

attacker to distinguish the right root.

2.4 Chapter Summary

We have surveyed the necessary concept related to the public key encryption. We have

reviewed a significant mathematical preliminaries will be used in this thesis. Also, we

presented the encryption techniques and classifying them based on the number of keys

into two groups symmetric key and asymmetric key encryptions. We discussed the

common problem in symmetric key encryption, the key distribution problem, and how

the asymmetric encryption solves this problem. After that. We have drilled down in

public key encryption and introduced the two public key cryptosystems namely RSA

and Rabin. We also, discussed how the two algorithms work and we stated the the basic

differences between the two. In the next chapter, we will present a literature review

about the RSA attacks, what are the proposed solutions for these attacks and what are

the limitations for these solutions.
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Known Attacks on RSA and

Mitigation Approaches

In this chapter we survey some of attacks against RSA and the proposed approaches

to solve or to mitigate them. We classify these approaches into three categories based

on its techniques. The first category is the Dice solution. Second category called Dice

solution follower. and third category, Hungry mouse solution. After that, we illustrate

the limitations for these solutions.

The chapter is organized as follows: Section 3.1 discusses the attacks against RSA.

Section 3.2 illustrates the proposed approaches to solve or to mitigate these attacks.

Section 3.3 shows the limitations of these approaches. Finally, we conclude the chapter

in section 3.4.

3.1 Attacks Against RSA

RSA encryption algorithm is secure as no one gets other than the public key, otherwise

the algorithm not secure [57]. For example, (d, p, q, φ(N)) are the important four RSA

parameters, they form the RSA trap-door, if any one of them is known, then the RSA

will break completely [16].

There are two type of attacks against RSA, Direct attack which is called brute-force,

and the other type is Indirect attacks. The attacker in the first category tries to get the

secret keys. But, the attackers in the second category try to exploit the weaknesses of

the algorithm implementation or depending on other information available to them to

generate their attacks.

20
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Unfortunately, the basic version of RSA is a deterministic algorithm. This means, the

message has always the same encryption for the same key. This property enable attackers

to successfully launch many kinds of Indirect attacks against the algorithm, such as

known plaintext attack, chosen-plaintext attack and others. The thesis will focus on the

following Indirect attacks, which are important for the remaining of this thesis.

3.1.1 Common Modulus (CMA)

Sometimes we want to prevent generating different modulus N=pq within the same

company, so the chairperson of the company distributes the same N for all or most

of the employees. To achieve the security, the chairperson issues different (e, d) pair

for each employee, since it is not secure if an encrypted message is sent for one of the

employees can be read by others. That is, the public key for ith employee is KU i = (N ,

ei) and the private key is KRi = (N , di). For instance, if Alice wishes to send the same

message M to Bob and John, she encrypts the message M by using Bob’s public key as

E(M , KUB) and encrypts the same message by using John’s public key as E(M , KUJ)

where KUB = (N , eB) and KUJ = (N , eJ).

The questions that arise, what is the harm if the same message is encrypted by using

the same N with different (e, d)? Is there any useful information can be retrieved

by attackers to get the original message? de Vries answered this question in [58]. If

the same message M is encrypted twice by using RSA cryptosystem using the same

modulus N with different public exponent KU i= (N , ei) where i=1, 2, and gcd(e1, e2)

=1, the attacker can recover the message M efficiently from the two ciphertexts C1 and

C2 by using Extended Euclidean Algorithm. That is, suppose that CB=M eB mod N ,

CJ=M eJ mod N be the ciphertexts corresponding to message M sent by Alice to Bob

and John, Where gcd(eB, eJ) =1.

In this case the attacker can recover the original message by using Extended Euclidean

Algorithm as M = (CB
a × CJ

b)mod N , where eB × a+ eJ × b=1. In short, the

attacker uses a Common Modulus attack to get the plaintext (original message) when

the same message is encrypted by two RSA keys that share the same modulus N , but

different Public exponent e. Algorithm 8 summarizes the process of Common Modulus

attack [59].
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Algorithm 8 Process of Common Modulus Attack

1: procedure

2: Input: A modulus N , e1, e2, C1 and C2, where gcd (e1, e2) =1.

3: Process: 1. By using Extended Euclidean Algorithm, find a and b where

e1×a+e2×b=1.

2. Find the Message M where M=Ca
1 × Cb

2 mod N .

4: Output: An original message M .

3.1.2 Known Plaintext Attack (KPA)

In this type of attack, the adversary may be able to capture a set of plaintexts with its

corresponding ciphertexts [32, 60], to build the set S= {(P 1, C1), (P 2, C2), (P 3, C3),...,

(P i, Ci) }, where P i ∈ plaintext and Ci ∈ ciphertext.

To understand the concept of the Known plaintext attack, suppose Alice sends a mes-

sage to Bob where Eve is in the middle, for somehow Eve knows that message starts

with “Dear Bob” and ends with “Regards”. Thus, Eve collects the plaintext with its

corresponding ciphertext to build the above set S. For example, let S= {(D, 02) , (e,

01), (a, 04), ..., (b, 10) }. Eve can used any later captured data to find the plaintext Pi

if the corresponding Ci is in the set S. If Alice sends the ciphertext “0201” to Bob; Eve

searches the corresponding plaintext for “0201” in the set S to find the message “De”.

Algorithm 9 summarizes the process of Known Plaintext attack.

Algorithm 9 Process of Known Plaintext Attack

1: procedure
2: Input: Ci (ciphertext).
3: Process: Based on the pre-built set S, the adversary compare Ci that captured

from the sender with its corresponding plaintext in the set S.
4: Output: P i (plaintext).

3.1.3 Chosen-Plaintext Attack (CPA)

This attack can be happened, when the adversary chooses arbitrary message, and in

somehow she is able to get the source system and insert the chooses message into the

system to encrypt it [32]. That is, Eve chooses arbitrary message M , and in somehow she

gets the source system and insert this message into the system to encrypt it, the system

generates the ciphertext for that message, now Eve has the plaintext with corresponding

ciphertext. Eve can build sets of plaintexts-ciphertexts as S= {(P 1, C1), (P 2, C2),...,

(P i, Ci)}, where P i ∈ plaintext and Ci ∈ ciphertext. Eve can use any later captured data
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from this system to find the plaintext P i if the corresponding Ci is in set S. Algorithms

10 and 11 summarize the process of Chosen-Plaintext attack.

Algorithm 10 Build/Update a Set of Plaintext-Ciphertext

1: procedure
2: Input: Choose plaintext P i.
3: Process: 1. Insert the plaintext into the source system (victim).

2. The system encrypts the message to generate Ci (ciphertext).
3. Attacker builds or updates the set S= {(P 1, C1), (P 2, C2),...

,(P i, Ci)}.
4: Output: set S= {(P 1, C1), (P 2, C2),..., (P i, Ci)}.

Algorithm 11 Process of Chosen-Plaintext Attack

1: procedure
2: Input: Ci (ciphertext).
3: Process: compare Ci that generated from targeted system (victim) with

its corresponding plaintext in the set S.
4: Output: P i (plaintext).

3.1.4 Timing Attack (TA)

As introduced by Wing H. Wong [61], the attacker obtains the information based on the

implementation of the algorithm itself, without exploiting any weakness in the mathe-

matical approach that the algorithm applies. The attacker exploits the variance of the

time in cryptographic operations. That is, the computations performed by a crypto-

graphic algorithm takes a different amount of time based on the input and the value of

the secret parameter in addition to the performance of the system that involved in this

computation. If RSA private key operations can be timed accurately, statistical analysis

can be used to obtain the secret key involved in the computations.

In RSA algorithm, the attacker needs to know the nature of the targeted system has

been used to compute Cd mod N . The attacker can measure the amount of required

time for this computation, after analysis the variance of the time. Due to the Boneh [62],

the attacker can recover the private key d one bit at a time until the secret exponent d is

known. Also, according to Kocher [18], attackers can recover a private key by computing

how long a computer takes time to decrypt a message.

3.1.5 Frequency of Block Attack (FOB)

RSA is a kind of block cipher cryptosystem even it is not intended to be used as a block

cipher. RSA is typically used for encrypting small pieces of data, such as symmetric key
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that is then used to encrypt the entire of the data. Nevertheless, RSA cryptosystem

works on block cipher manner where the message is divided into a number of blocks

based on the size of the block. The block size can be chosen between 1 to N − 1 for

some N .

We found a new attack that could be carried out against RSA. We call it Frequency of

Blocks Attack (FOB) attack. This attack exploits the repeated blocks in RSA. Suppose

the block size is 127 bytes and the message size is 635 bytes, so the number of blocks

are 5. If two blocks are repeated within the same message, most likely each of them will

have the same ciphertext. If the attacker in somehow known that the message contains

repeated block, may exploit this weakness to find the plaintext. To the best of our

knowledge, no one points to this type of attack in RSA. The reason may refer to the fact

that RSA is usually used for key exchange and digital signature, instead of encrypting

the majority of data.

FOB attack exists in symmetric key encryption, and many techniques used to solve

it, such as using cipher block chaining (CBC) mode, cipher feedback (CFB) mode and

counter mode (CTR) [63].

3.2 Proposed Approaches for Preventing RSA Attacks

In this thesis, we classifies the approaches for solving or mitigating RSA attacks into

three categories based on its techniques. First category is called Dice approach 1; this

category uses randomized component R which is added to the message M raised to the

power e as RM e before the mod operation, or raise R with e and multiplying the result

with M as ReM before the mod operation. The second category is called Dice approach

Follower ; it follows the Dice approach to solve or to mitigate RSA attacks, except in the

Common Modulus attack which can be solved by never send exact messages to receivers

in certain conditions. Finally, Hungry mouse approach 2; this category uses a random

component, such as alphabet component which is appended to the plain message M to

generate new message M ′ then perform the encryption on M ′. The main purpose for

these proposed approaches is to make RSA cryptosystem semantically secure.

1Dice approach: when you throw the dice, each time you get a random number from 1 to 6 [64].
This is similar to the random component which is added to RSA, each time you get a random number
between 0 to n− 1 [12].

2Hungry mouse approach refers to the Hungry mouse story, where the mouse has no foods and she
grew very thin. The mouse tries to find foods, when she looked here and there, she found a basket full
of corn. She found a small hole in the basket, and the hole is suitable for the mouse to creep from it to
inside the hole. Since she very hungry, she began ate and ate until she had grown. But unfortunately
when the mouse trying to go out of the basket, she could not. She was too fat to pass through the hole
[65]. This approach, like the mouse. When we add a component to the message before the encryption
may the size of the message with component will be greater than the original range of the RSA size,
and in this case we can encrypt the message but we cannot decrypt it.
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3.2.1 Dice Approach

Dice approach is proposed to secure RSA against some types of attacks that mentioned

in section 3.1. According to Jean Coron et al in [66]; Dice approach is a very common

solution which is used for encrypting messages by using RSA. Several people follow this

solution, such as Malek Kakish in [12] and David Pointcheval in [67]. Algorithm 12

clarifies how the Dice approach works.

Algorithm 12 Dice approach

1: procedure Encryption Process
2: Choose two distinct large prime numbers p, q.
3: Compute N as N = pq.
4: Compute Euler’s totient function φ(N) as φ(N) = (p− 1)(q − 1).
5: Choose a random integer e (public exponent), such that

1 <e <φ(N) and gcd(e, φ(N)) = 1.
6: Select the message M where 0<M <N − 1.
7: Select the random component R where 0< R <N − 1.
8: Compute the ciphertext C as C=(M e× R) mod N .
9: Compute the ciphertext for the random component R′, as R′=(Re) mod N .

As it it shown in the Dice approach algorithm, the first step is to find two large prime

numbers p and q, then calculate N such that, N=pq. After that, based on Euler Totient

function; compute φ(N), where φ(N)=(p− 1)(q − 1). Finally, select a random integer e

such that, e is greater than 1 and less than φ(N), where gcd(e, φ(N))=1. To make the

algorithm semantically secure, choose a large random integer R, where R between 0 and

N-1 to compute R′.

If Alice wants to send semantically secure message to Bob, she computes the cipher-

text C=M eR mod N and then compute R′= Re mod N . After that, she sends the

ciphertext that contains (R′, C) to Bob.

Another form for Algorithm 12 is computing C = MRe mod N . In this scenario, the

encryption is faster than the first scenario C = M eR mod N , since in the first scenario

we need to raise each block from the message to eth roots and the message may contains

several blocks and may each block has a different M e, while in the second scenario just

compute R raised to the power e once and each time multiply Re for all block need

to be encrypted. Or we can use C = M(R + 1)e mod N , just we compute R for the

first time then each time we want to encrypt the message the system itself chooses and

incremental random component.
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3.2.2 Dice Approach Follower

According to de Vries in [58], to avoid Common Modulus attack; sender should avoid

to send similar message to more than one receiver. Algorithm 13 illustrates the Dice

Approach Follower for solving RSA attacks:

Algorithm 13 Dice Approach Follower

1: procedure Encryption Process
2: if The sender uses Common Modules then
3: Never send identical messages to more than one receiver

4: else
5: Apply Dice Approach Algorithm

As shown in the Dice Approach Follower algorithm, we need to check if the attack is

Common Modules. If it is, then we ignore sending the message. Otherwise handle the

attack by following the Dice Approach Algorithm.

3.2.3 Hungry Mouse Approach

Dice approach and Dice approach follower use integer random components, while the

hungry mouse approach uses alphabet component. In alphabet there are 52 probability

from a to z and from A to Z, while in numbers there are 10 probabilities from 0 to 9,

so random alphabet is more secure and complex than random number.

According to Jindal and Gupta in [68], to make RSA secure against indirect attacks,

random alphabet R is added to the message M to generate new message M ′. Then we

encrypt the newly M ′ instead of M . Algorithm 14 illustrates how to solve RSA indirect

attacks by using Hungry mouse approach:

Algorithm 14 Hungry Mouse Approach

1: procedure Encryption Process

2: Choose two distinct large prime numbers p, q.

3: Compute N as N = pq.

4: Compute Euler’s totient function φ(N) as φ(N) = (p− 1)(q − 1).

5: Choose a random integer e (public exponent), such that

1 <e <φ(N) and gcd(e, φ(N)) = 1.

6: Select the message M where 0<M <N − 1.

7: Select random alphabet R.

8: Append R to the M to generate M ′ as M ′= M + R .

9: Compute the ciphertext C as C= (M ′e) mod N
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Line 8 in Algorithm 14; random alphabet R is added to the message M to generate new

message M ′ 3. Line 9 encrypts M ′ to generate ciphertext C. The rest of the algorithm

as disused above in this chapter.

3.3 Limitations of the Proposed Approaches for Solving

RSA Attacks

The Proposed approaches for handling the RSA attacks that mentions in section 3.2 are

good approaches, but actually they have some limitations.

Dice Approach Limitations

Actually the algorithm is semantically secure, since the output of the algorithm depends

on the value of randomized component R, but this algorithm suffers from the FOB

attack, since the algorithm does not solve the problem of block redundancy inside the

same message. Attackers can invest this threat for generating their attacks.

Adding randomized component to the RSA and encrypting this component by the same

RSA cryptosystem is less secure, because if the attacker can solve the RSA factorization

integers, RSA cryptosystem will no be secure and will not benefit from this addition

of randomization component. Breaking the RSA factorization mean breaking this ran-

domized component and the entire system will be compromised.

Dice Approach Follower Limitations

The Dice Approach Follower has the same limitations of Dice solution, since it is follow

the Dice Approach for solving some of RSA attacks. Although, the way of solving the

Common Modules attack is good, but it is not sufficient. If the message is emergency,

such as reporting bank robbery message, we cannot avoid sending this message to the

receivers, even if all of the receivers have same N and different e and d.

Hungry Mouse Approach Limitations

RSA necessitates that M should be between 0 and N − 1 [69–71], so as this solution if

M ′ > N−1, then the algorithm will no work, the following example illustrate limitation:

3Another form for Hungry Mouse Approach Algorithm by computing M ′ as M ′ =MR instead of M ′

=M+R
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Example

. Let p = 11 and q = 3

. Compute N as N=p×q=33

. Compute φ(N)=(p− 1) ×(q-1)=(11− 1) ×(3− 1)=20

. Select e = 3, and compute d = 7

. public key=(N = 33, e = 3)

. private key=(N = 33, d = 7)

. Let M = 30 and R = “A”, where “A” in ASCII=65

. Compute M ′ = 30 + 65 = 95

. Encryption: C = 953 mod 33=2

. Decryption: M ′ = 27 mod 33=29

. Find M = 29 − 65=−36, but actually M is 30 not −36

. Note: R could be word or character.

To make this algorithm works properly M ′ should be between 0 and N − 1, where

M ′=M+R. Thus, the message should be small in order to choose a good randomized

component, or the randomized component should be small for large message, and there

is no great benefit in these two cases. However, since the redundancy is possible in this

approach, so its not secure against FOB attack.

3.4 Chapter Summary

We have discussed the important attacks against RSA. Such attacks, Common Modu-

lus, Known plaintext, Chosen-plaintext, and Timing attacks. In addition, we surveyed

interesting approaches for solving these attacks, such as Dice approach, Dice approach

follower, and Hungry mouse approach. However, we found some of limitations for these

approaches and presented them in this chapter. Moreover, we have discussed the Fre-

quency of Block attack. To the best of our knowledge no one mention this type of attacks

against RSA.

In the next chapter we will introduce our proposed solution which is called Yamen

cryptosystem for counter-measuring the aforementioned attacks against RSA.



Chapter 4

Enhanced RSA Cryptosystem

(Yamen Cryptosystem)

This chapter presents a new method for combining two public-key algorithms RSA

and Rabin to produce an enhanced version of RSA public-key cryptosystem namely

Yamen Cryptosystem. A new additional randomization component is added to RSA

algorithm. This component is encrypted by Rabin algorithm to improve the security

level of RSA against indirect attacks which are discussed in Section 3.1 and make RSA

semantically secure. We employ Huffman compress algorithm in the enhanced RSA

to reduce data redundancy before adding the randomized component which make the

enhance version more secure against FOB attack. Also, Huffman compress is used to

improve the execution time for the enhanced RSA.

Section 4.1 presents the components used in building Yamen cryptosystem. Section 4.2

presents a new design model and implementation of Yamen cryptosystem. Section 4.3

discusses how Yamen system makes the data as short as possible to save space. Sec-

tion 4.4 discusses how Yamen speeds up the encryption and decryption execution time.

Finally, the chapter summary is given in section 4.5.

4.1 Yamen Cryptosystem Components

In this thesis, RSA cryptosystem is combined with Rabin algorithm to make RSA

stronger against the attacks presented in Section 3.1. The security of RSA and Ra-

bin cryptosystems depends on the intractability of the integer factorization [72, 73].

Therefore, if the attackers want to break the enhanced RSA, then they need to break

29
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the factorization of large numbers for both RSA and Rabin. Consequently, the attack

will require more time from the attacker than before.

Combined the aforementioned algorithms enhances the security of enhanced RSA al-

gorithm. A randomized parameter called Y is added to the basic RSA to make it

semantically secure. This means that the same message could have different encryption

outputs. Therefore, an attacker cannot differentiate between two ciphertexts from each

other even if the attacker knows or chooses the corresponding plaintexts. Also, the com-

bined algorithm deploys the compression algorithm (Huffman coding) to reduce the data

redundancy and to make all of the characters have the same level of distribution and this

solve the FOB attack. To enhance the execution time, we encrypt the header file and

blinding the binary file results from compressed message instead of encrypt the entire

message. The binary file of the compressed message is blinded by the randomization

component Y to make it semantically secure (The binary file for the same message will

be different based on the value of Y ).

Yamen cryptosystem has four components: RSA Algorithm, Rabin algorithm, Huffman

coding, and Random component. RSA and Rabin presented in section 2.3. Section 4.1.1

discusses the Huffman coding in Yamen Cryptosystem. Section 4.1.2 presents the natural

of the random component used by Yamen cryptosystem, and how it make the algorithm

semantically secure.

4.1.1 Huffman Coding in Enhance RSA (Yamen Cryptosystem)

According to the Simmons in [74], cryptographers consider data compression algorithms

as a ciphering scheme. In [75], Shannon suggests reducing the redundancy in data before

encryption to protect it against statistical analysis. In this thesis, we use Huffman codes

to achieve Simmons and Shannon suggestions. However, you may replace Huffman with

another suitable and more effective compression algorithm.

Huffman coding is a common method for data compression [76]. The compression process

facilitates storing and transmission large data. Huffman coding has been developed by

David Huffman in 1952. It is a lossless data compression algorithm [77]. This mean,

the original data can be recovered exactly from the compressed data. The algorithm is

used to compress data (symbols, alphabet, ...) to generate variable-length codes instead

of fixed-length codes for each symbol. Given a set of symbols in a file, the algorithm

performs some statistical analysis to construct a table that contains the frequencies of

occurrence for each symbol. The algorithm uses the constructed frequency table to build

Huffman tree, which is used to assign each symbol with it is appropriate code length

based on the symbol occurrence.
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The result of applying Huffman coding on the data file is two files binary file (B)

and header file (H), where the binary file depends on the header file to retrieving the

original data. If we lose the header file, then we cannot retrieve the true data. Actually,

Yamen system depends on this fact for enhancing the speed in encryption and decryption

process. The following example describes Huffman coding process.

Let us take the message: Hello, this message is created by Alice.

There are three steps for generating the header file and binary file for that message.

Step 1: Create a frequency table based on statistical analysis. column 2 in Table 4.1

illustrates the frequency for each character in the message.

Symbol Number of Ocurence Code Code Length Total Length

sp 6 101 3 18

e 6 110 3 18

s 4 000 3 12

c 2 0101 4 8

l 3 1000 4 12

i 3 1110 4 12

t 2 0110 4 8

d 1 00111 5 5

A 1 00110 5 5

a 2 11110 5 10

o 1 00100 5 5

m 1 10010 5 5

H 1 01000 5 5

, 1 01110 5 5

r 1 00101 5 5

y 1 01001 5 5

À 1 01111 5 5

g 1 111110 6 6

b 1 100111 6 6

. 1 111111 6 6

h 1 100110 6 6

Total 41 167

Table 4.1: The Symbol’s Frequencies in Details

Step 2: Based on the stored frequency table, construct a code tree. Create a parent

node with a frequency that is represent the sum of the two smaller symbols frequencies

as Figure 4.1.



Chapter 4. Enhanced RSA Cryptosystem (Yamen Cryptosystem) 32

Figure 4.1: First Two Smallest Symbols into Leaves

Repeat the process in a loop by combining the two smallest symbols to reach the tree

in Figure 4.2

Figure 4.2: Code Tree According to Huffman

To form a Huffman code, traverse the tree to symbols you want. For instance, the

output is 0 each time the left branch is taken, and the output is 1 each time when the

right branch is taken. Column 3 in Table 4.1 depicts the Huffman code, while column

4 is the length of the Huffman code in bits. Column 5 represents the total length in

bits which is computed by the formula Total Length = Symbol Frequency × Code Length .

Step 3: Construct the header file and the binary file for the message. The header file H

is the file that contains all symbols or the ASCII for each symbol from the origin data

file, where each symbol inside is assigned with it is occurrence. The Header file contains

unique symbols, where no symbol is repeated twice. The binary file B is the file, where

each symbol inside it is replaced with its code. For instance, consider a message before

compression is: Hello, this message is created by Alice.
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The number of bits in this message = 41 symbols × 8 bits/symbol = 328 bits, since each

symbol represents in 8 bits (fixed length). We take 41 bits instead of 40 bits, since we

add the extra bit for EOF character, which is represented in Table 4.1 by the symbol À.

Header File: .

For simplifying, we write the header file on the form (character and its binary code 4 ),

where the binary code for each character in the message exist inside the Table 4.1

sp101e110s000c0101l1000i1110t0110d00111A00110a11110o00100m10010H01000,0111

0r00101y01001À01111g111110b100111.111111h100110

Binary File: .

The corresponding message “Hello, this message is created by Alice.” is pre-

sented in the binary file as follows:

01000110100010000010001110101011010011011100001011001011000000011110111110

11010111100001010101001011101111001101100011110110011101001101001101000111

00101110111111011110

The number of bits for the compressed message in the binary file equal to 167 bits. Each

symbol represents in the binary file is assigned to certain length of binary code based

on its frequency of occurrence. In our message example, we represent the character e

by 110, the character a with 11110, and so on. From the example, e has a different

length of binary code comparing with a, since e repeated in the message 6 times, while

a repeated in the message 2 times. The process in which the different length of binary

code assigned to each symbol based on the number of occurrence of that symbol called

(variable length).

Figure 4.3, summarizes the Huffman coding Process by compressing data to generate

the header file and binary file.

4In our application Yamen Creyptosystem, we replace the symbols by their equivalent of ASCII code
in the Header File. We replace d with 100 in decimal and space with 32 and so on. Also, we replace
the binary code with frequency of characters occurrence. This changes depend on the programmers,
no matter how you want to store the header file (character: binary code) or (ASCII: frequency of
occurrence).
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Figure 4.3: Summarize the Huffman coding Process

Figure 4.3 depicts, the plaintext is passed to Huffman code, which is compressed the

plaintext to generate header file and binary file.

To un-compress the message, first read the header file, and use its information to build

the Huffman tree as the tree in the Figure 4.2. Second, read the binary file bit by bit,

then begin from the root of the tree, when finding 0 bit, move to the left on the tree,

when finding 1 bit, move to the right on the tree until finding a leaf node (we have found

the symbol). Then repeat the process for all remaining bits until all message characters

are retrieved.

4.1.2 Random Component in Yamen Cryptosystem

RSA is deterministic algorithm. Encrypting the same message more than one time by

using RSA cryptosystem with the same key leads to the same ciphertext. Accordingly, an

attacker may generate different types of attacks to recover the original message without

knowing the keys. To prevent this type of attack, each time the encryption of the same

message with the same RSA key should lead to different ciphertext. This is the idea

behind of using random component in Yamen cryptosystem

For making the encryption semantically secure, we use randomized component in the

encryption algorithm. We use the letter Y as symbol for the randomized component,

where Y is a random integer.

Characteristics of Y :

� Random integer used once for each message (nonce).
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� We can use any random number generators to generate the random number. In

Yamen system we used congruential generator5 [78]. We select the seed6 and pass

the seed to the congruential generator function and the function itself generate the

number as the following:

rn+1 = a× rn + c.(mod.m). Where:

r0 is a seed.

r1, r2, r3, ..., are the random numbers.

a, c and m are constants, In Yamen system we select a = 159, c = 806 and m = 232

� We use Y for blinding7 the ciphertext of the header file and blinding the binary

file. In the case of Y less than the ciphertext we repeat Y many times to be as the

length of the ciphertext and if the Y greater than the ciphertext, we remove the

number of bits from Y to be as the same length of the ciphertext. And the same

idea applying when blinding the binary file.

Yamen cryptosystem uses the random number to make the algorithm semantically se-

cure, each time the message is encrypted, different ciphertext is obtained. Therefore, it

is hard for an attacker to learn from the ciphertext about the original message, because

ciphertext for the same message looks different. The following scenario explains how Ya-

men system make the algorithm semantic secure. Suppose Alice wishes to send a secure

message M to Bob, and Alice wants the encryption of the message to be semantically

secure, she does the following:

1. Alice encrypts the message by using Bob’s public key to generate the ciphertext

C = E(M,KUB).

2. Alice chooses a random integer, such as Y .

3. Alice computes C ′ = C ⊕ Y

4. Alice sends C ′ to Bob.

5. Bob computes C = C ′ ⊕ Y , to get the original ciphertext.

6. Bob uses his private key to decrypt D(C,KRB).

5congruential generator is an example of random generator, but any trusted generator rather than
this generator can be used

6Seed is any integer used to initialize a random number generator.
7Blinding is a technique used by Yamen cryptosystem to scramble the message by integer number,

to preventing attacks from knowing the actual ciphertext for header file and the actual binary file.
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The ciphertext depends on the value of Y , suppose we encrypt the message twice, such

as the ciphertext for the first time is C1 and the ciphertext in the second time C2, since

we encrypt the same message this means C1 = C2. Let C ′1 = Y1⊕C1 and C ′2 = Y2⊕C2,

if Y1 6= Y2 then C ′1 6= C ′2. This is what we call it Semantically Secure Based on Ran-

domized Component.

In this thesis, we will exploit the concept of semantically secure as:

1. Compress the message by using Huffman codes.

2. The results from the compression are header file and binary file.

3. Encrypting the header file by using RSA Cryptosystem and the result is a cipher-

text C, to make it semantically secure we choose a random component called Y

and then calculate new ciphertext C ′ as C ′ = C ⊕ Y . In this thesis, we call C ′

Mixture.

4. To make the binary file B semantically secure as the header file H, we blind B to

gets B′ using the same Y that has been used in calculating C ′. To generate B′ we

do the formula B′ = B ⊕ Y to make B different.

5. The Random component Y , should be secret, so we use Rabin encryption algo-

rithm, to encrypt Y .

Figure 4.4, illustrates the process of adding a randomized component to the Huffman

header file in addition to blinding the Huffman binary file.
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Figure 4.4: Adding Randomized Component to the Huffman Header File and blinding
Binary File

In Figure 4.4, the plaintext message is entered to the Huffman coding compression

algorithm. Huffman coding compresses the message to generate header file H and binary

file B. The header file passes to the RSA algorithm for encryption. The resulting

ciphertext C, that is generated from encryption process is XOR-ed with the random

component Y to generate the mixture C ′. Also, the binary file B is XOR-ed with the

same Y to generate blinding binary file B′.

4.2 Design Model and Implementation of Yamen Cryp-

tosystem

Section 4.2.1 presents new models for Yamen cryptosystem. One of them represents

the encryption process and second one represents the decryption process. In the next

section 4.2.2 we present the way to implement Yamen system encryption and decryption

process.

4.2.1 New Design Model for Yamen Cryptosystem

Figure 4.5 depicts the modified version of the encryption process for the basic RSA

Cryptosystem. If Alice wants to send a message (M) to Bob, she chooses a randomized
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parameter (Y ), then she compresses the message by using the Huffman code to generate

the header file (H) and binary file (B). She computes the ciphertext (C) for the header

file, such as C=E(H, KUB )RSA. To make the encryption semantically secure she

computes the Mixture (C ′), such as C ′=C⊕Y , also she blinds the binary file B with Y

to generate B′ as B′=B⊕ Y . Alice encrypts Y by Rabin Cryptosystem as E(Y , KUB

)Rabin, to increase the complexity against the adversary. Finally, Alice sends packet

contains ciphertext of Y , C ′, and B′ to Bob.

Figure 4.5: Modified RSA cryptosystem (Model for Encryption Process)

Figure 4.6 depicts the modified version of the decryption process for the basic RSA,

Bob uses his Rabin private key to decrypt the randomized component Y as Y= D(Y ,

KRB)Rabin, then he removes Y from the Mixture (C ′) to get the encrypted header C as

C =C ′⊕Y . Bob gets the header file H by using his RSA private key to decrypt C as

H=D(C, KRB)RSA, after that Bob recovers B from B′ as B=B′⊕Y , then he uses H to

recover the original message M from the binary file B (uncompressed the binary file).
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Figure 4.6: Modified RSA cryptosystem (Model for Decryption Process)

4.2.2 Implementation of Yamen Cryptosystem

Yamen cryptosystem is a desktop application which has been implemented using Java

programming language, using Eclipse JUNO version 4.2.2. Yamen Cryptosystem con-

tains two view each of these view contains seven phases. The Educational View that

can be used by instructors to teach and demonstrate the way that Yamen cryptosystem

works, where every executed step is visible. Due to the Yamen system, students can an-

alyze each step as long as they want, then perform their own tests. Business View could

be used by the companies to encrypt their data. All steps are executed by the system in
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the background, no need to think how the system works, just run the system by feeding

it the needed files and then determine the encrypt or decrypt process. However, the

two views contain generating keys and random component phase, compression phase,

encryption phase and blinding phase in the case of encryption process, or un-blinding

phase, decryption phase and final uncompressing phase in the case of decryption process.

The Figure 4.7 shows a snapshot for Yamen cryptosystem user interface.

Figure 4.7: Snapshot for Yamen Cryptosystem

Because there are different programing languages around the world. The best way to

make the programmers understand your code is to use an algorithm. For this reason,

we do not focus on any programing languages to disucss Yamen Cryptosystem.

The following algorithms, present the encryption and decryption processes in Yamen

cryptosystem:

Step 1: Algorithm 15, presents keys generation process on the receiver side.
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Algorithm 15 Generate Yamen cryptoystem Keys

1: procedure Generate Keys

2: Compute RSA public key (e,N)

3: Compute RSA private key (d,N)

4: Compute Rabin public key (N)

5: Compute Rabin private key (p, q)

.

Keep the private keys secret and publish the public keys.

Step 2: Algorithm 16, presents random component generation process on the sender

side.

Algorithm 16 Generate Random Component

1: procedure Generate Y

2: Select a seed, where the seed is any integer

3: Pass the seed to the congruential generator function

4: Generate Y from congruential generator function

Step 3: Algorithm 17, presents message compression process using Huffman code on the

sender side.

Algorithm 17 Compress Message

1: procedure Compress the Message M

2: Pass the message to the Huffman Code

3: Generate Binary file (B) from Huffman Code

4: Generate Header file (H) Huffman Code

Step 4: Algorithm 18, presents message encryption process on the sender side.

Algorithm 18 Encrypt the message

1: procedure Encrypt the Message M

2: Pass the header file (H) to RSA cryptosystem

3: Encrypt H by RSA and the result is C

4: Blind C by Y to generate the mixture C ′ as C ′=C ⊕ Y

5: Blind binary file B by Y to generate B′ as B′=B ⊕ Y

6: Encrypt Y by Rabin Cryptosystem
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Send C ′, B′ and encryprted Y to the receiver side. To decrypt the message, the receiver

does the following:

Step 1: Algorithm 19, presents message decryption process on the receiver side.

Algorithm 19 Decrypt The Message

1: procedure Decrypt Message M

2: Decrypt Y using Rabin cryptosystem

3: Compute C from the mixture C ′ as C=C ′ ⊕ Y

4: Compute B from B′ as B=B′ ⊕ Y

5: Pass C to RSA decryption to generate H

.

Step 2: Algorithm 20, presents message uncompress process on the receiver side.

Algorithm 20 Uncompress The Message

1: procedure Uncompress The Message M

2: Pass the H and B to Huffman code

3: Used H to build Huffman tree

4: Decode B to recover M using the Huffman tree

5: The output is the message M

4.3 Reduced Space Results

Yamen cryptosystem, used Huffman coding compression algorithm. This algorithm com-

press the message to reduce its size. Yamen system exploits the Huffman coding as:

1. Reduce the redundancy in data. That is, Yamen cryptosystem used Huffman

to represents each character with its occurrence (Number of times the character

is repeated) instead of storing the same character many times. This make the

message as short as possible.

2. The output of the compression are header file H and binary file B. The header

file is not useful without the binary file and vice versa [79]. Also, in most cases

the binary file is larger than the header file. Yamen depends on those two facts in

its encryption. In most cases, the result of applying RSA encryption technique is

a ciphertext which is greater than the plaintext itself because RSA uses a padding

scheme8. To save space as possible, Yamen just encrypts the header file instead

8Padding scheme is the number of bits/bytes added to the message to define the block boundary.
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of encrypting the binary file or the entire true message. In addition, Yamen uses

blinding technique by applying the XOR operation on the ciphertext of the header

file and the binary file. The size of the XOR output is equal to the size of the

largest input operand. In other words, the size of output of XOR-ed two numbers

each of them is 8 bit is 8 bits. And, if one of the numbers is 9 bits and the other

is 15 bits, then the output is 15 bits. No extra bit greater than the larger operand

numbers. We can solve the hungry mouse approach using XOR operation. Instead

of using addition or multiplication, we can use the XOR operation to make the

additive random component not affect on the message size. Which is mean, the

message with a random component always less than the modules N

Yamen system is not only used for securing the message, but also, it is used to make the

ciphertext as short as possible. This saves space and make transmission the data over

the network faster. In addition, less space is used to store the data in an effective way.

4.4 Speeding Up Yamen Cryptosystem

RSA operations are power and modulo arithmetic operations of large numbers operation,

so these operations reduce the speed of RSA [80] and make RSA slow in restricted

environments [81]. Therefore, RSA usage is limited for encrypting session keys and

digital signatures instead of encrypts the large data [82]. Large data is encrypted by

using symmetric key encryption. Hence, session keys are encrypted using RSA and

communicated parties use these keys to encrypt the large data using one of symmetric

key encryption algorithms.

Yamen cryptosystem uses two things to speedup RSA, Huffman coding and XOR op-

eration.Yamen cryptosystem uses Huffman coding to compress the data, so the result

of this compression are header file and binary file. Yamen encrypts just the header file

instead of encrypting the entire message. Also, it blinds the binary file using an XOR

operation, since XOR has been always faster than multiplication, division, subtraction

and addition [25]. So, Yamen cryptosystem is more faster than RSA. In Yamen cryp-

tosystem no need for using symmetric key algorithm, since the large data reduce to

small one, thus Yamen system itself could encrypt/decrypt the large data in less time,

so Yamen cryptosystem is more effective than basic RSA.
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4.5 Chapter Summary

We have presented the methods and components used in Yamen cryptosystem. Yamen

uses randomized component called Y to make it semantically secure. Also, it depends

on Rabin cryptosystem for encrypting this component. Yamen cryptosystem uses Huff-

man code to remove the redundant symbols from the plaintext messages before the

encryption. This save space and make the message more secure against FOB attack.

Also, Yamen cryptosystem uses Huffman and XOR operation to speedup the algorithm

computation and keep it superior the basic RSA.

In the next chapter, we present our testing results of Yamen cryptosystem comparing to

basic RSA.



Chapter 5

Performance of Yamen

Cryptosystem

Yamen cryptosystem comes with three sensitive enhancement factors comparing with

basic RSA. These factors are Security, Execution time and ciphertext size. Section 5.1

presents the overview of experiment setup, then main finding results are presented in

section 5.2. Also, the main differences between Yamen cryptosystem and the basic RSA

are summarized in section 5.3. Chapter summary is given in section 5.4.

5.1 Overview of Experiment Setup

In this section we summarized the overview of experiment setup. For testing the security

of semantic for Yamen cryptosystem, we generated a test file and two different random

components Y 1 and Y 2. We applied the encryption process on the same file with these

components and each time we got different encryption. Proofs and evidence of the claim

that Yamen cryptosystem is semantically secure presented in the section 5.2.1.

For testing the execution time, we need a random files and random component, so we

generate a random test files with different sizes, then generated keys with 1024 bits for

RSA and Rabin. Also, we generate a random component for Yamen cryptosystem, then

we run the application on Windows 7, Model: Latitude E5420, Processor: Core (TM)

i7-2640M, CPU 2.80 GHz, Memory 8 GB and System type is 32-bit operating system.

We observed that Yamen system is faster than basic RSA in the case of decryption and

encryption. Also, we executed the same experiment on two different PC’s with different

characteristics and we got the same results.

45
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To reduce ciphertext size, Yamen cryptosystem uses Huffman compression algorithm, to

compress the file before the encryption process. We found the produced ciphertext from

RSA is greater than the original plaintext, while the produced ciphertext from Yamen

system is less than the orginal plaintext.

5.2 Results Analysis

This section presents the finding results with respect to security, execution time, and

the size of the ciphertext.

5.2.1 Security Issue

Yamen cryptosystem is semantically secure and mitigates the RSA attacks presented in

section 3.1.

1. Yamen System is Semantically Secure

Choosing a message M and two different random components Y1 and Y2, leads to dif-

ferent encryption for the same message. Let the original message is

“Hello, this message is created by Alice.”

The ciphertext of header file in decimal values ( Without using any random components):

2693501899457580877460174812454487875225019780748904308842659828080766478

7108011549972799414729590362475610248778830538113536194202183289739885607

4023400474060461443195028474832945729657280154836425983745483707887208177

5832900869569483855704632151493693790436559477411340065007460335770828453

4213636220749520277877213268497269896155252383181767231822071472860623852

0306459213430622178770239758565117998465711496426570005631447067558488639

4142327315716563952470724068298553015671841026245837581283520835875982176

3808951354876446748193791455993743308591376928305582307130108337417685742

78318389388223318055070814102617

Binary File before encryption (Without using any random components).

0100011010001000001000111010101101001101110000101100101100000001111011111

0110101111000010101010010111011110011011000111101100111010011010011010001

1100101110111111011110
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Let the random number Y1 = 965, the binary representation of Y1 is 1111000101, which

is generated by congruential random generator with Seed = 1.

The corresponding ciphertext of the header file:

7734603758932941297561426833292196189106980827565416859381798210543977923

5243168726398192097154081364801786432403546561237891815822318668170278984

9390088457830633354914604559785226527992633390115038346893391081804277692

5375041720803533464001127765064630314735537555115588310973666674185109147

7170671015871700853958204778955772384997651883360185517641966838459525403

1424663681073282483583416897003840101053423920000082512775228717613428545

6089712091163832504924491356184847019270277133580535041683550116584353528

0612265704177173015880139439005719033405680804886159322356072065553944602

44138101147668978242314169137085

The blinded Binary file which is the result of XOR-ing the Binary file with random

number Y1

1011011111110100011111001011110010001000001100111011011101011110111110000

1110000000100000010100011100100110110100100101010010110001100010110101101

1001010010101000101111

Let the random number Y2 = 1124, the binary representation of Y2 is 10001100100,

which is generated by congruential random generator with Seed = 2.

The corresponding ciphertext of the header file:

9782207142968026859824128908670379720101147739778918285036680122868886140

6892791721142728846016878407545699924014653970658311844999587170366633124

1783601811185460844339618416225103366924374904940818636146218692896055297

0009018862915881952234918955650788122336734298758609261755241478956752113

2390010710082723266743773046299960377977892208551444224720432873830983909

0908568690547183972591552405724934255184371092948432510560440238951507282

5703931854627486456847374004542735678052660320223376274164604004700322544

3122779217738948137963940548693457061929957706770692286981808750973680211

3193772512221525714321187666853

The blinded binary file for Y2:

1100101000011001101100011001100100001011100010100000001000011000110011001
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0010001100001011101100000101010010111111011110100100001000001011111110101

1010111100110011111010

As we can see, encrypting the same message gives different ciphertext. Therefore, Yamen

cryptosystem is semantically secure. The attacker cannot know if this ciphertext related

to one message or to the different messages. While is not the case for the basic RSA

where encrypting the message with same key always gives the same ciphertext.

Mathematical Proof to show that Yamen cryptosystem is semantically secure:

Suppose the ciphertext for the message M is C.

Select two different random components Y1 and Y2.

Compute C ′1=C ⊕ Y1 , and C ′2=C ⊕ Y2. Because Y1 6= Y2 and the C is the same for

the two Y ’s. This means C ′1 6= C ′2. This is what we want to proof.

2. Yamen Cryptosystem Mitigate and Thwart Basic RSA Attacks Using Ev-

idence and Proofs

In this section we describe how Yamen cryptosystem resists or mitigate attacks describes

in section 3.1 through evidence and proofs.

1. Common Modulus Attack

The basic RSA is not secure against this type of attack while Yamen cryptosystem

mitigate it. The Common Modulus Attack can be used to recover the message that

was encrypted using two RSA keys by using the same modules N with different

public exponent e.

Theorem 1: In [16, 83], Let N = pq be a RSA modulus and let < e1, N > and

< e2, N > be two public keys such that gcd(e1, e2) = 1. Suppose a plaintext M is

encrypted with both public keys. If we know C1=Me1 mod N.and.C2=Me2 mod

N then we can compute M.

Proof: For knowing e1 and e2, find two integers a and b such that a × e1 +

b × e2 = 1 using the Extended Euclidean Algorithm. Then compute: C1
aC2

b ≡
Ma×e1M b×e2 ≡Ma×e1+b×e2 ≡M mod N

This implies that any party can obtain the public keys and the corresponding ci-

phertexts could be capable to intercept all the messages which would be encrypted

twice to different users.
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In the case of Yamen cryptosystem, the attacker cannot find the message since C ′1

is not the actual C1, actually C ′1 = C1⊕Y and C ′2 = C2⊕Y . Applying the formula

C ′1
aC ′2

b mod N ≡ M ′. The attacker find M ′ which not the correct message M ,

since the attacker has C ′1 and C ′2 which are not the actual C1 and C2. Therefore,

Yamen cryptosystem is protected from common modulus attack.

2. Known Plaintext Attack

In this attack, the adversary obtains not only the ciphertext of various messages,

but besides the plaintext of those messages. The adversary exploit this type of

attacks to get any new captured messages encrypted with the same key.

Proof:

In [84, 85], given: P1, P2, P3, ..., Pi and corresponding ciphertexts C1 = E(K,P1), C2 =

E(K,P2), ..., Ci = E(K,Pi). Build the set S = {(P1, C1), (P2, C2), (P3, C3),

..., (Pi, Ci)}, where Pi ∈ plaintext and Ci ∈ ciphertext.

Because the basic RSA is a deterministic algorithm, encrypting the same message

more than once with the same key gives the same ciphertext. Based on the pre-

built set S, the adversary can used any later captured data to find the plaintext

Pi+1 if the corresponding Ci+1 is in the set S. Accordingly, the adversary who

obtain partial of plaintext, can guess the other parts.

Yamen cryptosystem is not deterministic, since it depends on random component

that makes the ciphertext always different, even if the same message is encrypted

more than one time with the same key. The attacker cannot guess the right

plaintext-ciphertext pair.

Given: P1, C1 ⊕ Y1 = E(K,P1), P2, C2 ⊕ Y2 = E(K,P2), ..., Pi, Ci ⊕ Yi = E(K,Pi).

Where Y1 6= Y2 6= Y3, ..., 6= Yi. Since each message is encrypted with different

Y , the attacker cannot guess further new plaintext based on a pre-built set of

plaintext-ciphertext. Therefore, Yamen cryptosystem is protected from Known

plaintext Attack.

Because Y1 6= Y2 6= Y3, ..., 6= Yi, each message has different Y , attackers cannot

build a set of plaintext with corresponding ciphertext. Thus, Yamen cryptosystem

is protected from Known plain-text attack.

3. Chosen-Plaintext Attack

Same as Known plaintext attack, except that the message is chosen by the adver-

sary.

Given: {P1, C1 = E(K,P1)}, {P2, C2 = E(K,P2)}, ..., {Pi, Ci = E(K,Pi)}. Build



Chapter 5. Performance of Yamen Cryptosystem 50

the set S = {(P1, C1), (P2, C2), (P3, C3), ..., (Pi, Ci)}, where Pi ∈ plaintext and

Ci ∈ ciphertext. Based on the pre-built set S, the adversary can used any later

captured data to find the plaintext Pi+1 if the corresponding Ci+1is in the set S.

Proof:

Given: P1, C1 ⊕ Y1 = E(K,P1), P2, C2 ⊕ Y2 = E(K,P2), ..., Pi, Ci ⊕ Yi = E(K,Pi).

Where Y1 6= Y2 6= Y3, ..., 6= Yi. Since each message is encrypted with different

Y , the attacker cannot guess further new plaintext based on a pre-built set of

plaintext-ciphertext. Therefore, Yamen cryptosystem is protected from Known

plaintext Attack.

Yamen cryptosystem is protected from this type of attack because it depends on

a random component, and each message has different Y . That is encrypting the

same message more than once produces different ciphers, so attackers can not build

a unique set like S that contains plaintext with corresponding ciphertext.

4. Timing Attack

Kocher in [18] observed that it is possible to obtain the private exponent d without

factoring the modulo N by using some knowledge of probability and statistics by

measuring the time taken by a hardware, such as smart card or a computer to do

the RSA decryption or signature that uses the modular exponentiation algorithm.

Proof of the cryptanalytic attacks on RSA can be found in [16].

In Yamen cryptosystem the attacker still needs the random component Y to de-

crypt the ciphertext, finding d does not allow the attacker to decrypt the message

without Y . Also, since Y is XOR-ed with the ciphertext the time is vary depends

on the random component and this add some confusion to the attacker.

5. Frequency of Blocks Attack (FOB)

The basic RSA suffers from FOB attack. When one of the blocks repeated within

the same message, then the block has the ciphertext similar to that in the first

block, the main cause of this problem return to the fact that basic RSA is deter-

ministic algorithm (same message has the same ciphertext). The following example

shows how basic RSA not secure against this attack. Suppose the key size is 1024

bits, and the block size 127 bytes for plaintext, message is: (254 bytes which is

mean two blocks).

Eve is one of the attackers women Eve is one of the attackers women Eve is one

of the attackers women Eve is one of Eve is one Eve is one of the attackers women

Eve is one of the attackers women Eve is one of the attackers women Eve is one

of Eve is one

ciphertext: (similar ciphertext)

4053882913553927190690506668220673161420225073939765930225459447848
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3282115799689651534813170580476050291062144129409655940405346888192

1736939839169058202563036392391903179066158778280043472508624772649

2525132481258420593884037592215909406040659102274340666328699951450

2390033350405048055647531449064810056597

4053882913553927190690506668220673161420225073939765930225459447848

3282115799689651534813170580476050291062144129409655940405346888192

1736939839169058202563036392391903179066158778280043472508624772649

2525132481258420593884037592215909406040659102274340666328699951450

2390033350405048055647531449064810056597

Yamen cryptosystem is protected from this type of attack, since it compresses the

message before the encryption which is made all of the characters in the message

has a uniform distribution. The following ciphertext produced for the same mes-

sage after applying Yamen cryptosystem.

ciphertext:(each block has different ciphertext)

2284419579637540474199177876330350409831242577008055804649922610692

9245927132456833007726603602225646033540909831360219319114207313778

9369250486972759219798253776040409747725396231205670779564085983040

7637374593055233764837387354176158316097812091477351593320923805486

0496880956721402740261189602575811769744

9867466537872031755884492656409497450867000762637858322895785630503

1509845130341447379726550799975759941856995112902800716411844281778

5063152897674454198732730809501185749758902123962038647028000572531

6097770097906489985877906710530401328785349299993340141988935516494

2961708957998119411447113878266731369808

Table 5.1 illustrates how Yamen cryptosystem immunizes the presented attacks in sec-

tion 3.1.
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Attacks Against RSA Mitigation Approach Attack Possibility Against Yamen

1 Common Modulus

Using randomized component Y Not possible
2 Known Plaintext
3 Chosen-Plaintext
4 Timing

5 Frequency of Blocks Attack Using Huffman coding Not possible

6 Brute Force Attack Using Rabin cryptosystem
May possible
but needs long time

Table 5.1: Yamen Cryptosystem is Immune Against the RSA Attacks

5.2.2 Execution Time Issue

RSA is used for exchanging symmetric keys between two parties far away from each other

in a secure manner, then the communicating parties use a symmetric encryption algo-

rithm for encrypting data depends on that symmetric keys. Since RSA is not practical

and takes long time for encrypting and decrypting large data [86, 87].

Yamen cryptosystem can be used for encrypting large data. Therefore, there is no

need for using two algorithms one for exchanging keys and the other for encrypt data,

all larges messages will be reduced to small one by using Yamen system. In addition

Yamen consumes less time than RSA for encryption, since in Yamen encrypts only the

header file and blinding the binary file instead of encrypting the entire message. Yamen

decryption process is faster than the decryption in RSA. Yamen encrypts and decrypts

only the header file but the basic RSA needs to encrypt and decrypt the entire file.

To test the performance of Yamen cryptosystem comparing to basic RSA, we carried

out three experiments on different PCs. Table 5.2 shows the characteristic for each PC.

Table 5.2: Systems Properties
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We select N , d and e as below:

We select N= pq be the product of two large primes of the same size (n/2 bits each).

N=1024 bits, i.e. 309 decimal digits, where p=512 bits and q=512 bits.

RSA modulo (N):

1141821244239255713610436395565356044382407421812976725108781990769

1814019779938013822951885763277949853520386315751189689212241673253

3192329558431299159176326515525586122202347184358738524535511184314

9347752317692252339185965335636868744860373065370223387892621406292

25501337558865628480388086780024550688313

RSA public exponent (e):

65537 (standard public exponent)

RSA private exponent (d):

1664027145540554392281196578123001599080881530392868257856474479124

2277751944426502589836803778791781596803822222826741035089509776346

5602627464268632721834278448219311328890068866109537678429602966152

4657073559530905057449769116812607063381070187430449087105080409693

3553719368719860127462476578927521870593

The following tables and charts, show how Yamen system is significantly faster than

RSA at the three different PCs.
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Table 5.3: Execution Time of Encryption Process For RSA and Yamen Cryptosystems

Table 5.3, shows the average execution time for encrypting ten files on different PC’s

by using two cryptosystems, basic RSA algorithm and Yamen cryptosystem. Each file is

encrypted three times, so we compute the average of these reading times. We notice that

the execution time directly proportional to the file size. In other words, if the file size

increase then the execution time for encrypting the file increase too. The reason that

Yamen system is faster than RSA refers to the fact that Yamen does not encrypt the

entire message, it encrypts the header file and blinding the binary file which is generated

from compression phase.

Figure 5.1, represents a line chart to show the behavior of RSA and Yamen in encryption

process through different files on different PC’s. Actually, the figure represents the

average execution time. That is, each point on the chart represents the average of

execution time for three PC’s for each cryptosystem. For instance, the point (1, 2.88)
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represents the average of (2.5,3.02,3.11) for RSA, and the point (1,2.91) represents the

average of (2.82,2.65,3.26) for Yamen.

Figure 5.1: Line Chart For Execution Time of Encryption Process For RSA and
Yamen Cryptosystems

Figure 5.1 shows that Yamen is slower than RSA in encryption process when the file is

one megabyte. Such that, Yamen is 2.91s, while RSA is 2.88s when the file is 1MB. The

reason behind this returns that Yamen encryption process passes through four phases:

analyzing (doing statistical analysis for data), compressing, encrypting and blinding

data. However, since the file is relatively small the analyzing, compressing and blinding

may take more time than the encryption itself.

Table 5.4, shows the average execution time for decrypting ten files on different PC’s by

using two cryptosystems, basic RSA algorithm and Yamen cryptosystem.
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Table 5.4: Execution Time of Decryption Process For RSA and Yamen Cryptosystems

The average of three reading for each file are depicted in the Table 5.4. The execution

time is directly proportional to the file size. If the file size increase then the execution

time for decrypting file increase too. There is a big difference in the execution time

between encryption and decryption, this return to the two reasons. First, private expo-

nent d is larger than public exponent e. Second, when encrypting the file using RSA;

the encrypted file (ciphertext) is greater than original file. We discuss the file size in

section 5.2.3.

By comparing the Table 5.3 with Table 5.4, you see that the execution time of the

decryption process in Yamen less than the encryption time for the same cryptosystem.

The behavior of RSA and Yamen in decryption process is depicted in Figure 5.2.
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Figure 5.2: Line Chart For Execution Time of Decryption Process For RSA and
Yamen Cryptosystems

Generally, the encryption is faster than decryption or may equally, but this is not the case

for Yemen system as show in Figure 5.2. The reason for this observation is the existence

of four phases in Yamen encryption process (analyzing, compression, encryption and

blinding). On the other hand, there are three phases in Yamen decryption process that

make its decryption faster (un-blinding, decryption and un-compression). However, in

all cases Yamen is faster than the basic RSA in decryption process. RSA needs to

decrypt the entire message, but Yamen just needs to decrypt the header file which is

smaller than the entire message.

Our testing results from the three experiments shows that, Yamen cryptosystem is faster

than basic RSA by 45% in encryption process and 99% in decryption process.

Note: This section represents just the average of three reading files through discussion

in the process of encryption and decryption. Three different reading for each file can be

found in detail in Appendix B.
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5.2.3 Space Issue

Yamen cryptosystem uses Huffman compression algorithm to reduce file sizes, so the files

generated from Yamen system are smaller than the original files, which is helping for

reducing resource usage, such as data storage space or transmission capacity. Table 5.5

shows the size of ten files what happened to the size after the encryption by using RSA

and Yamen cryptosystems.

Table 5.5 RSA and Yamen Ciphertext Table

Original File Ciphertext of RSA and Yamen Cryptosystems

Size in MB Size in KB RSA Ciphertext in KB Yamen Ciphertext in KB

1 1024 1033 469

2 2048 2065 938

3 3072 3097 1407

4 4096 4129 1876

5 5120 5161 2344

6 6144 6193 2813

7 7168 7225 3282

8 8192 8257 3751

9 9216 9289 4219

10 10240 10321 4688

Figure 5.3: RSA and Yamen Ciphertext Size

Figure 5.3 demonstrates that Yamen cryptosystem is the better choice for encrypting

large data in a secure and fast manner over a public network. Yamen cryptosystem
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results in an efficient use of the space since RSA system increases the size of ciphertext

by 1% compared to the original file size, while Yamen cryptosystem, reducing the the size

of the ciphertext by 54% compared to the original file size. However, the percentage of

file size reduction by using Yamen cryptosystem depends on the number of occurrences

of the symbols inside the file, because using the Huffman coding in compression process,

and Huffman in role depends on the symbols occurrence inside the file.

Note: This section represents the sizes of the files without details. The size of each

header file and binary file exists in Appendix B in Table B.1.

5.3 Yamen Cryptosystem Comparing with the Basic RSA

The enhanced version of RSA is more secure, faster, and has shorter encrypted message

size comparing with the basic RSA. Yamen cryptosystem has the following characteris-

tics:

1. Semantically secure compering to the basic RSA.

2. Secure against Frequency of Block Attacks. According to Shannon[88, 89], reducing

the redundancy of data before encrypting it improve the security of a cryptosystem.

Thus, Huffman code reduces the redundancy of data.

3. More secure against Brute Force attack than the RSA, since the attacker needs to

break the factorization of large numbers for both RSA and Rabin. Consequently,

the attacker would require longer time than the one for breaking the basic RSA.

4. Faster encryption and decryption compare with basic RSA, since RSA encrypts

the entire message, while Yamen encrypts the header file and blind the binary file

instead of encrypting the entire message.

5. Short cipher size. Yamen system compresses data before the encryption process,

this could facilitate storing and transmission large data, while we cannot do that

in the RSA.

6. Capability for encrypting large data. Because RSA is much slower in encryption

and decryption process comparing to symmetric encryption techniques, it is used

for encrypting the keys that transmitted between two parities while the whole mes-

sage encrypted by using symmetric encryption such as, AES encryption algorithm.

While in Yamen system no need to any symmetric algorithm for encrypting the

data.



Chapter 5. Performance of Yamen Cryptosystem 60

5.4 Chapter Summary

We have discussed three sensitive factors that impact the usage of the public key cryp-

tosytems, Security, Execution time and the Size of the ciphertext. These factors were

enhanced by Yamen cryptosystem. We did three experiments on different PCs and we

have found that Yamen system superior the basic RSA. Yamen is more secure, faster

than RSA. Also, We found that Yamen system is better than RSA related to the space

issue especially if we have a small bandwidth or small space storage.
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Summary and Outlook

RSA is popular and most widely used cryptosystem through the years until now, it is

used in different applications and protocols. Even though, RSA seems to be robust

and secure public key algorithm, attackers succeeded to exploit some properties of RSA

algorithm and its implemetation to carry out some attacks. Such attacks are Common

Modulus, Known plaintext, Chosen-plaintext, and Timing attacks. Moreover, RSA does

not solved blocks redundancy in the message, hence RSA suffers from Frequency of Block

attack. Also, RSA is a time consuming algorithm, its speed very slow comparing with

symmetric key encryption algorithms like AES algorithm.

The thesis presented the earlier proposed solutions used to solve or at least to mitigate

the RSA attacks. Also, it has categorized them into three categories based on their

techniques into Dice solution, Dice solution follower, and Hungry mouse solution. In

addition, the thesis described the limitations of these solutions.

We suggested a new modifications to enhance RSA cryptosystem called Yamen cryp-

tosystem. This enhanced RSA combines basic RSA with another cryptosystem called

Rabin. Rabin is used to secure the randomized component, this component is added to

the RSA and used to make it semantically secure, to get different ciphertexts for the

same message. Since the message may have redundant characters, we used a Huffman

coding algorithm to remove the redundancy in the message. For minimizing encryp-

tion/ decryption time of the enhanced RSA, we encrypt part of the message which is

called the header file and blind the other part which is called a binary file instead of

the encrypting the entire message. Binary file and Header file are produced as output

from the Huffman coding algorithm, and this algorithm is based on statistical analysis

to generate these files.
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The thesis states some evidence and mathematical proofs to show that Yamen system is

more secure than basic RSA. In addition, some experiments done and shows that Yamen

system is faster and more effective when it is used for transferring large encrypted text

over public networks.

We found that Yamen cryptosystem more secure than RSA. Yamen has different cipher-

texts for the same message compered to the basic RSA that has the same ciphertext for

the same message. Our testing results showed that Yamen cryptosystem is faster than

basic RSA by 45% in encryption process and 99% in decryption process. Also, we found

that RSA system increases the size of ciphertext by 1% compared to the original file size,

while Yamen cryptosystem, reducing the size of ciphertext by 54% from the original size.

However, the percentage of file size reduction by using Yamen cryptosystem depends on

the number of occurrences of the symbols inside the file.

6.1 Summarization of Yamen Characteristics Against RSA

Attacks and Other Proposed Approaches

Table 6.1 summarize the security of Yamen against RSA attacks. Table 6.2 summarize

the comparison results of Yamen against other proposed approaches to solve RSA at-

tacks.

Table 6.1 illustrates how Yamen cryptosystem immunizes the presented attacks in chap-

ter 3 (section 3.1).

Table 6.1 Yamen Cryptosystem is Immune against the RSA Attacks

Attacks Against RSA Mitigation Approach Attack Possibility Against Yamen

1 Common Modulus

Using randomized component Y Not possible
2 Known Plaintext
3 Chosen-Plaintext
4 Timing

5 Frequency of Blocks Attack Using Huffman coding Not possible

6 Brute Force Attack Using Rabin cryptosystem
May possible
but needs long time

Table 6.2 shows the comparison between the Yamen cryptosystem and other proposed

approaches.
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Table 6.2 Yamen Cryptosystem Comparing with Other Proposed Approaches

Proposed approaches Approaches Advantages Approaches Limitations

Dice approach,
section 3.2.

1. Semantically secure algorithm.
2. Solves the common modules attack in a good way
....comparable to the dice follower approach.

1.Uses the same RSA to encrypt the random component Y
...not secure enough. since, breaking the RSA factorization
. mean breaking this randomized component Y .
2.Adds additional delay to the RSA encryption process.
3.Suffers from the FOB attack.

Dice approach follower,
section 3.2.

Semantically secure algorithm.

1. Solves the common modules attack by never send
... the exact messages to receivers is insufficient, since we
.....cannot send an emergency message 3.3.
2.Includes the disadvantages of Dice approach.

Hungry mouse approach,
section 3.2.

1.Semantically secure algorithm.
2.The size of the randomized component is complex
...comparing to the Dice approach and Dice approach
...follower.

1. If the message greater than N, the algorithm no longer
....works.
2. Adds additional delay to the RSA encryption process.
3. Suffers from the FOB attack.

Yamen cryptosystem,
section 5.2.

1.Semantically secure algorithm.
2.Generates complex ciphertext.
3.Competitive execution time.
4.Produce smaller size of ciphertext.
5.Solves FOB attack.
6.Stays for a long time against brute force attack.

When the file is less than 1MB RSA is faster in encryption
process.
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6.2 Difficulties and Obstacles

This section points to the difficulties and obstacles, that have been faced when doing

this thesis. These difficulties summarized as the following:

RSA is much slower public key encryption algorithm. A lot of time was consumed when

doing the experiments. Most of the time lost during the decryption process. For this

reason, we execute our experiments up to the ten files with different sizes starting with

one megabyte up to the ten megabytes. We cannot execute the experiments on large

files, since we have no enough time to wait RSA to decrypt large size files. Depends on

our results, we made a correlation between the times we got from the experiments and

the predicted time. By using linear regression numerical method, we develop a method

for predicting the required time for encryption/decryption of any file depends on our

PC characteristics. Figure 6.1 presents the prediction method in Yamen system to find

the execution time for 1000MB using Yamen and RSA.

Figure 6.1: Execution time for Yamen and RSA

As the Figure 6.1, execution time for RSA encryption is about 2273.95 seconds, and the

time decryption is about 135955.628 seconds. while Yamen required 977.29 seconds in

encryption, and 732.2107 seconds in decryption.

We did not find a lot of resources about using RSA to encrypt large messages. Maybe

the reason refers to the fact that RSA is used to encrypt the session keys instead of

encrypts the true message.

We did not find a lot of resources about using Rabin algorithm. Maybe the reason

refers to the fact that Rabin is not becoming popular, because RSA was developed first.

Also, Rabin is not a practical algorithm to use for encrypting messages. Since, extra

complexity is used to identify the corresponding plaintext from the four possible roots.



Chapter 6. Summary and Outlook 65

To benefit and to make Rabin practical, it has been used for encrypting only the random

component instead of entire messages.

6.3 Recommendations

Depends on the experiments results presented before in this thesis, we recommend to

use Yamen cryptosystem in the following cases:

� For using semantic and secure algorithm to work in fast way for encrypting or

decrypting large data over a public network.

� For sending the same sensitive data to more than one party.

� For encrypting data without the use of symmetric and asymmetric keys algorithms

together.

6.4 Outlook

The presented results in this thesis have demonstrated the effectiveness of the Yamen

cryptosystem approach, it could be further developed in a number of ways:

� Replace Huffman coding with extended Huffman coding may increase the Yamen

cryptosystem execution time for encryption and decryption process.

� Use another secure random generator rather than congruential generator, may

increase the security of Yamen cryptosystem.

� Develop new version of Yamen cryptosystem to work on mobile.

The research presented in this thesis seems to have raised more questions that it has

answered, but there are many questions we can answer by doing the following:

� Integrate Yamen with security protocols such as PGP and test the performance

and security implications.

� Make compresson between Yamen cryptosystem and symmetric key encryption

technique as AES.

� Testing Yamen cryptosystem against others indirect attacks such as, Low Private

Exponent, Low Public Exponent to make it more secure.

� Testing Yamen cryptosystem against Chosen ciphertext attack to mitigate it.



Appendix A

Snapshots for Yamen

Cryptosystem Processes

There are two views in Yamen system, Educational view and Business view. The below

figures show the encryption process for Yamen cryptosystem design:

A.1 Encryption Process: Educational View

Phase 1: Generate Keys and Random Component

Figure A.1: Generate Keys and Random Component Process
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Phase 2: Compression Process

Figure A.2: Yamen Cryptosystem Compression Process

Phase 3: Encryption Process

Figure A.3: Yamen Cryptosystem Encryption Process
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Phase 4: Blinding Process

Figure A.4: Blinding Process

A.2 Encryption Process : Business View

Phase 1: Keys and Random Component Generation

Figure A.5: Keys and Random Component Generation
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Phase 2: Files Selection Process

Figure A.6: Files Selection Process

Phase 3: Generate Encryption File Process

Figure A.7: Generate Encryption File Process



Appendix B

Experiments : Details Tables And

Charts To Show That Yamen

Cryptosystem Is Faster Than

RSA.

In this appendix, we describe our experiments result in detailed tables and charts. These

experiments, show that Yamen cryptosystem is faster than RSA.

Table B.1 The size of Header File and Binary File Generated From Huffman Coding

File Size in Kilobyte File Size in Byte Header File Size in Byte Binary File Size in Byte

1024 1024000 228 480013

2048 2048000 232 960025

3072 3072000 235 1440037

4096 4096000 235 1920049

5120 5120000 235 2400061

6144 6144000 236 2880073

7168 7168000 236 3360084

8192 8192000 237 3840096

9216 9216000 237 4320108

10240 10240000 243 4800120

Table B.1, shows the size of header file and binary file for the ten tested files. each header

file contains signature as #YamenCryptosystem, Huffman counts file for fileName, #Fri

Jan 23 19:27:45 IST 2015. Date and time change based on the time and date the file

compress.

70



Appendix B. Experiments : Details Tables And Charts To Show That Yamen
Cryptosystem Is Faster Than RSA 71

Table B.2 Execution Time of RSA Encryption From PC1

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.513 2.607 2.399 2.5

File 2 2 4.804 4.643 4.671 4.7

File 3 3 6.861 7.026 6.729 6.9

File 4 4 8.956 9.07 8.886 9

File 5 5 11.051 11.249 11.32 11.2

File 6 6 13.68 13.369 13.54 13.5

File 7 7 15.462 15.668 15.25 15.5

File 8 8 17.96 17.558 17.953 17.8

File 9 9 21.717 21.401 20.687 21.3

File 10 10 22.831 22.872 22.647 22.8

Table B.2, shows the average execution time for encrypting ten files by using the basic

RSA algorithm. Each file is encrypted three times, so we compute the average of these

reading times.

Table B.3 Execution Time of RSA Decryption From PC1

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 134.27 133.13 133.579 133.66

File 2 2 264.424 268.911 265.699 266.34

File 3 3 400.65 397.664 401.489 399.93

File 4 4 530.272 530.585 530.096 530.32

File 5 5 669.692 663.263 669.417 667.46

File 6 6 822.441 804.51 809.934 812.3

File 7 7 948.129 938.223 944.748 943.7

File 8 8 1075.878 1086.319 1078.683 1080.29

File 9 9 1221.505 1210.76 1239.224 1223.83

File 10 10 1349.759 1350.657 1348.766 1349.73

Table B.3, shows the average execution time for decrypting ten files using basic RSA

algorithm. We compute the average of three reading for each file as in the encryption

process.
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Table B.4 Execution Time of Yamen Encryption From PC1

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.905 2.804 2.751 2.82

File 2 2 3.498 3.42 3.378 3.43

File 3 3 4.29 4.653 4.468 4.47

File 4 4 5.61 5.692 5.857 5.72

File 5 5 6.736 6.448 6.675 6.62

File 6 6 7.297 7.279 7.902 7.49

File 7 7 8.612 8.907 8.071 8.53

File 8 8 9.072 9.231 9.065 9.12

File 9 9 10.546 10.293 10.512 10.45

File 10 10 11.683 11.418 11.786 11.63

Table B.4, shows the average execution time for encrypting ten files by using Yamen

algorithm. Each file is encrypted three times, so we compute the average of these reading

times.

Table B.5 Execution Time of Yamen Decryption From PC1

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.296 1.804 2.252 2.12

File 2 2 2.116 2.282 2.506 2.3

File 3 3 2.483 2.718 3.144 2.78

File 4 4 3.326 3.586 3.684 3.53

File 5 5 4.463 4.948 4.848 4.75

File 6 6 5.29 5.199 5.458 5.32

File 7 7 6.028 6.077 6.373 6.16

File 8 8 6.495 6.877 6.979 6.78

File 9 9 8.182 7.497 7.37 7.68

File 10 10 8.427 8.458 7.662 8.18

Table B.5, shows the average execution time for decrypting ten files using Yamen al-

gorithm. We compute the average of three reading for each file as in the encryption

process.
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Figure B.1: Execution Time for RSA and Yamen Encryption Process (PC1)

Figure B.2: Execution Time for RSA and Yamen Decryption Process (PC1)
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The following tables and graphs, are another two experiments running in two different

PC’s with different characteristics to show that Yamen cryptosystem is faster than RSA.

Table B.6 Execution Time of RSA Encryption From PC2

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.855 2.906 3.285 3.02

File 2 2 5.111 5.732 5.569 5.47

File 3 3 7.75 7.806 8.099 7.89

File 4 4 10.625 10.757 10.384 10.59

File 5 5 12.139 12.572 12.954 12.56

File 6 6 15.443 14.744 15.268 15.15

File 7 7 17.413 17.863 17.112 17.46

File 8 8 20.101 20.352 21.136 20.53

File 9 9 23.363 24.081 23.092 23.51

File10 10 24.842 24.392 24.813 24.68

Table B.7 Execution Time of RSA Decryption From PC2

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 150.547 152.07 151.132 151.25

File 2 2 297.689 297.969 298.747 298.14

File 3 3 444.772 448.098 445.102 445.99

File 4 4 597.925 593.324 597.109 596.12

File 5 5 746.158 743.055 746.916 745.38

File 6 6 892.343 889.634 893.173 891.72

File 7 7 1046.371 1055.765 1059.693 1053.94

File 8 8 1207.236 1213.067 1213.18 1211.16

File 9 9 1369.996 1369.951 1367.53 1369.16

File 10 10 1515.706 1512.852 1512.798 1513.79
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Table B.8 Execution Time of Yamen Encryption From PC2

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.419 2.935 2.597 2.65

File 2 2 3.888 3.898 3.705 3.83

File 3 3 4.776 4.608 4.488 4.62

File 4 4 5.484 5.581 6.27 5.78

File 5 5 7.223 6.835 6.447 6.84

File 6 6 7.867 7.732 7.96 7.85

File 7 7 9.363 9.406 9.003 9.26

File 8 8 10.159 10.804 10.009 10.32

File 9 9 11.89 11.237 11.888 11.67

File 10 10 12.608 12.063 11.892 12.19

Table B.9 Execution Time of Yamen Decryption From PC2

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 1.874 1.234 1.265 1.46

File 2 2 2.332 2.227 2.093 2.22

File 3 3 3.387 3.153 3.044 3.19

File 4 4 3.512 3.605 3.544 3.55

File 5 5 4.793 4.652 4.792 4.75

File 6 6 5.259 5.572 5.696 5.51

File 7 7 6.258 6.678 5.789 6.24

File 8 8 6.211 7.709 7.459 7.13

File 9 9 8.683 8.223 7.069 7.99

File 10 10 8.507 9.284 7.99 8.59
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Figure B.3: Execution Time for RSA and Yamen Encryption Process (PC2)

Figure B.4: Execution Time for RSA and Yamen Decryption Process (PC2)
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Table B.10 Execution Time of RSA Encryption From PC3

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 3.005 3.176 3.143 3.11

File 2 2 6.021 5.717 5.727 5.82

File 3 3 8.421 8.421 8.373 8.41

File 4 4 10.78 11.004 11.06 10.95

File 5 5 13.49 13.742 13.855 13.7

File 6 6 16.467 16.177 16.21 16.28

File 7 7 18.999 18.942 18.668 18.87

File 8 8 21.43 21.574 21.256 21.42

File 9 9 24.509 24.36 24.266 24.38

File10 10 26.477 26.815 26.73 26.67

Table B.11 Execution Time of RSA Decryption From PC3

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 165.04 164.922 165.472 165.14

File 2 2 331.522 332.941 335.182 333.22

File 3 3 498.477 496.855 495.879 497.07

File 4 4 670.622 672.98 685.55 676.38

File 5 5 841.374 842.529 819.171 834.36

File 6 6 1012.094 1013.664 995.613 1007.12

File 7 7 1153.341 1145.127 1156.84 1151.77

File 8 8 1342.598 1341.429 1324.035 1336.02

File 9 9 1478.807 1474.442 1472.8 1475.35

File 10 10 1687.022 1626.527 1622.741 1645.43
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Table B.12 Execution Time of Yamen Encryption From PC3

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 3.653 2.977 3.161 3.26

File 2 2 4.214 4.382 4.229 4.28

File 3 3 5.119 5.235 5.531 5.3

File 4 4 6.747 6.563 6.391 6.57

File 5 5 7.706 7.63 8.083 7.81

File 6 6 8.664 8.889 8.956 8.84

File 7 7 10 10.002 9.659 9.89

File 8 8 10.471 10.361 10.993 10.61

File 9 9 12.636 11.438 12.583 12.22

File 10 10 12.92 13.278 13.301 13.17

Table B.13 Execution Time of Yamen Decryption From PC3

File Information Execution Time/Second

File Name File Size/MB First Reading Second Reading Third Reading Average

File 1 1 2.587 2.232 2.42 2.41

File 2 2 2.967 2.296 2.592 2.62

File 3 3 3.919 3.899 3.95 3.92

File 4 4 4.902 4.136 4.308 4.45

File 5 5 5.002 4.909 4.76 4.89

File 6 6 5.665 5.915 5.961 5.85

File 7 7 6.773 6.648 6.81 6.74

File 8 8 7.515 7.492 7.304 7.44

File 9 9 7.865 8.323 8.302 8.16

File 10 10 9.108 8.676 8.901 8.9
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Figure B.5: Execution Time for RSA and Yamen Encryption Process (PC3)

Figure B.6: Execution Time for RSA and Yamen Decryption Process (PC3)
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Our testing results from the three experiments tell us, Yamen cryptosystem is faster

than basic RSA by 45% in encryption process and 99% in decryption process.
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